Correspondence between nontrivial nonarchimedean norms and rank one valuations #
Nontrivial nonarchimedean norms correspond to rank one valuations.
Main Definitions #
NormedField.toValued
: the valued field structure on a nonarchimedean normed fieldK
, determined by the norm.Valued.toNormedField
: the normed field structure determined by a rank one valuation.
Tags #
norm, nonarchimedean, nontrivial, valuation, rank one
The valuation on a nonarchimedean normed field K
defined as nnnorm
.
Equations
- NormedField.valuation h = { toFun := nnnorm, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯, map_add_le_max' := h }
Instances For
theorem
NormedField.valuation_apply
{K : Type u_1}
[hK : NormedField K]
(h : IsNonarchimedean norm)
(x : K)
:
(NormedField.valuation h) x = ‖x‖₊
The valued field structure on a nonarchimedean normed field K
, determined by the norm.
Equations
Instances For
def
Valued.norm
{L : Type u_2}
[Field L]
{Γ₀ : Type u_3}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
L → ℝ
The norm function determined by a rank one valuation on a field L
.
Equations
- Valued.norm x = ↑((Valuation.RankOne.hom Valued.v) (Valued.v x))
Instances For
theorem
Valued.norm_nonneg
{L : Type u_2}
[Field L]
{Γ₀ : Type u_3}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
(x : L)
:
0 ≤ Valued.norm x
theorem
Valued.norm_add_le
{L : Type u_2}
[Field L]
{Γ₀ : Type u_3}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
(x : L)
(y : L)
:
Valued.norm (x + y) ≤ max (Valued.norm x) (Valued.norm y)
theorem
Valued.norm_eq_zero
{L : Type u_2}
[Field L]
{Γ₀ : Type u_3}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
{x : L}
(hx : Valued.norm x = 0)
:
x = 0
def
Valued.toNormedField
(L : Type u_2)
[Field L]
(Γ₀ : Type u_3)
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
The normed field structure determined by a rank one valuation.
Equations
- Valued.toNormedField L Γ₀ = NormedField.mk ⋯ ⋯