Rank one valuations #
We define rank one valuations.
Main Definitions #
RankOne: A valuationvhas rank one if it is nontrivial and its image is contained inℝ≥0. Note that this class contains the data of the inclusion of the codomain ofvintoℝ≥0.
Tags #
valuation, rank one
class
Valuation.RankOne
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
:
Type u_2
A valuation has rank one if it is nontrivial and its image is contained in ℝ≥0.
Note that this class includes the data of an inclusion morphism Γ₀ → ℝ≥0.
The inclusion morphism from
Γ₀toℝ≥0.- strictMono' : StrictMono ⇑(hom v)
Instances
theorem
Valuation.RankOne.strictMono
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
StrictMono ⇑(hom v)
theorem
Valuation.RankOne.zero_of_hom_zero
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
{x : Γ₀}
(hx : (hom v) x = 0)
:
If v is a rank one valuation and x : Γ₀ has image 0 under RankOne.hom v, then
x = 0.
theorem
Valuation.RankOne.hom_eq_zero_iff
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
{x : Γ₀}
:
If v is a rank one valuation, thenx : Γ₀ has image 0 under RankOne.hom v if and
only if x = 0.
def
Valuation.RankOne.unit
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
Γ₀ˣ
A nontrivial unit of Γ₀, given that there exists a rank one v : Valuation R Γ₀.
Equations
- Valuation.RankOne.unit v = Units.mk0 (v ⋯.choose) ⋯
Instances For
theorem
Valuation.RankOne.unit_ne_one
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
A proof that RankOne.unit v ≠ 1.