Ultrametric spaces #
This file defines ultrametric spaces, implemented as a mixin on the Dist
,
so that it can apply on pseudometric spaces as well.
Main definitions #
IsUltrametricDist X
: Annotatesdist : X → X → ℝ
as respecting the ultrametric inequality ofdist(x, z) ≤ max {dist(x,y), dist(y,z)}
Implementation details #
The mixin could have been defined as a hypothesis to be carried around, instead of relying on
typeclass synthesis. However, since we declare a (pseudo)metric space on a type using
typeclass arguments, one can declare the ultrametricity at the same time.
For example, one could say [Norm K] [Fact (IsNonarchimedean (norm : K → ℝ))]
,
The file imports a later file in the hierarchy of pseudometric spaces, since
Metric.isClosed_ball
and Metric.isClosed_sphere
is proven in a later file
using more conceptual results.
TODO: Generalize to ultrametric uniformities
Tags #
ultrametric, nonarchimedean
theorem
IsUltrametricDist.dist_triangle_max
{X : Type u_2}
[Dist X]
[self : IsUltrametricDist X]
(x : X)
(y : X)
(z : X)
:
theorem
dist_triangle_max
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(y : X)
(z : X)
:
instance
IsUltrametricDist.subtype
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(p : X → Prop)
:
Equations
- ⋯ = ⋯
theorem
IsUltrametricDist.ball_eq_of_mem
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
{x : X}
{y : X}
{r : ℝ}
(h : y ∈ Metric.ball x r)
:
Metric.ball x r = Metric.ball y r
theorem
IsUltrametricDist.mem_ball_iff
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
{x : X}
{y : X}
{r : ℝ}
:
y ∈ Metric.ball x r ↔ x ∈ Metric.ball y r
theorem
IsUltrametricDist.ball_subset_trichotomy
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(y : X)
(r : ℝ)
(s : ℝ)
:
Metric.ball x r ⊆ Metric.ball y s ∨ Metric.ball y s ⊆ Metric.ball x r ∨ Disjoint (Metric.ball x r) (Metric.ball y s)
theorem
IsUltrametricDist.ball_eq_or_disjoint
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(y : X)
(r : ℝ)
:
Metric.ball x r = Metric.ball y r ∨ Disjoint (Metric.ball x r) (Metric.ball y r)
theorem
IsUltrametricDist.closedBall_eq_of_mem
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
{x : X}
{y : X}
{r : ℝ}
(h : y ∈ Metric.closedBall x r)
:
Metric.closedBall x r = Metric.closedBall y r
theorem
IsUltrametricDist.mem_closedBall_iff
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
{x : X}
{y : X}
{r : ℝ}
:
y ∈ Metric.closedBall x r ↔ x ∈ Metric.closedBall y r
theorem
IsUltrametricDist.closedBall_subset_trichotomy
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(y : X)
(r : ℝ)
(s : ℝ)
:
Metric.closedBall x r ⊆ Metric.closedBall y s ∨ Metric.closedBall y s ⊆ Metric.closedBall x r ∨ Disjoint (Metric.closedBall x r) (Metric.closedBall y s)
theorem
IsUltrametricDist.isClosed_ball
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(r : ℝ)
:
IsClosed (Metric.ball x r)
theorem
IsUltrametricDist.isClopen_ball
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(r : ℝ)
:
IsClopen (Metric.ball x r)
theorem
IsUltrametricDist.frontier_ball_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(r : ℝ)
:
frontier (Metric.ball x r) = ∅
theorem
IsUltrametricDist.closedBall_eq_or_disjoint
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
(y : X)
(r : ℝ)
:
Metric.closedBall x r = Metric.closedBall y r ∨ Disjoint (Metric.closedBall x r) (Metric.closedBall y r)
theorem
IsUltrametricDist.isOpen_closedBall
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
{r : ℝ}
(hr : r ≠ 0)
:
IsOpen (Metric.closedBall x r)
theorem
IsUltrametricDist.isClopen_closedBall
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
{r : ℝ}
(hr : r ≠ 0)
:
IsClopen (Metric.closedBall x r)
theorem
IsUltrametricDist.frontier_closedBall_eq_empty
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
{r : ℝ}
(hr : r ≠ 0)
:
frontier (Metric.closedBall x r) = ∅
theorem
IsUltrametricDist.isOpen_sphere
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
{r : ℝ}
(hr : r ≠ 0)
:
IsOpen (Metric.sphere x r)
theorem
IsUltrametricDist.isClopen_sphere
{X : Type u_1}
[PseudoMetricSpace X]
[IsUltrametricDist X]
(x : X)
{r : ℝ}
(hr : r ≠ 0)
:
IsClopen (Metric.sphere x r)