Documentation

Mathlib.Analysis.CStarAlgebra.Exponential

The exponential map from selfadjoint to unitary #

In this file, we establish various properties related to the map fun a ↦ NormedSpace.exp ℂ A (I • a) between the subtypes selfAdjoint A and unitary A.

TODO #

noncomputable def selfAdjoint.expUnitary {A : Type u_1} [NormedRing A] [NormedAlgebra A] [StarRing A] [ContinuousStar A] [CompleteSpace A] [StarModule A] (a : { x : A // x selfAdjoint A }) :
{ x : A // x unitary A }

The map from the selfadjoint real subspace to the unitary group. This map only makes sense over ℂ.

Equations
Instances For
    theorem Commute.expUnitary {A : Type u_1} [NormedRing A] [NormedAlgebra A] [StarRing A] [ContinuousStar A] [CompleteSpace A] [StarModule A] {a : { x : A // x selfAdjoint A }} {b : { x : A // x selfAdjoint A }} (h : Commute a b) :