Documentation

Mathlib.Algebra.Star.Unitary

Unitary elements of a star monoid #

This file defines unitary R, where R is a star monoid, as the submonoid made of the elements that satisfy star U * U = 1 and U * star U = 1, and these form a group. This includes, for instance, unitary operators on Hilbert spaces.

See also Matrix.UnitaryGroup for specializations to unitary (Matrix n n R).

Tags #

unitary

def unitary (R : Type u_1) [Monoid R] [StarMul R] :

In a *-monoid, unitary R is the submonoid consisting of all the elements U of R such that star U * U = 1 and U * star U = 1.

Equations
theorem unitary.mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :
U unitary R star U * U = 1 U * star U = 1
@[simp]
theorem unitary.star_mul_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
star U * U = 1
@[simp]
theorem unitary.mul_star_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
U * star U = 1
theorem unitary.star_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
@[simp]
theorem unitary.star_mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :
instance unitary.instStarSubtypeMemSubmonoid {R : Type u_1} [Monoid R] [StarMul R] :
Star { x : R // x unitary R }
Equations
  • unitary.instStarSubtypeMemSubmonoid = { star := fun (U : { x : R // x unitary R }) => star U, }
@[simp]
theorem unitary.coe_star {R : Type u_1} [Monoid R] [StarMul R] {U : { x : R // x unitary R }} :
(star U) = star U
theorem unitary.coe_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : { x : R // x unitary R }) :
star U * U = 1
theorem unitary.coe_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : { x : R // x unitary R }) :
U * (star U) = 1
@[simp]
theorem unitary.star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : { x : R // x unitary R }) :
star U * U = 1
@[simp]
theorem unitary.mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : { x : R // x unitary R }) :
U * star U = 1
instance unitary.instGroupSubtypeMemSubmonoid {R : Type u_1} [Monoid R] [StarMul R] :
Group { x : R // x unitary R }
Equations
  • unitary.instGroupSubtypeMemSubmonoid = Group.mk
Equations
instance unitary.instStarMulSubtypeMemSubmonoid {R : Type u_1} [Monoid R] [StarMul R] :
StarMul { x : R // x unitary R }
Equations
  • unitary.instStarMulSubtypeMemSubmonoid = StarMul.mk
instance unitary.instInhabitedSubtypeMemSubmonoid {R : Type u_1} [Monoid R] [StarMul R] :
Inhabited { x : R // x unitary R }
Equations
  • unitary.instInhabitedSubtypeMemSubmonoid = { default := 1 }
theorem unitary.star_eq_inv {R : Type u_1} [Monoid R] [StarMul R] (U : { x : R // x unitary R }) :
theorem unitary.star_eq_inv' {R : Type u_1} [Monoid R] [StarMul R] :
star = Inv.inv
@[simp]
theorem unitary.val_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : { x : R // x unitary R }) :
(unitary.toUnits x) = x
@[simp]
theorem unitary.val_inv_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : { x : R // x unitary R }) :
(unitary.toUnits x)⁻¹ = x⁻¹
def unitary.toUnits {R : Type u_1} [Monoid R] [StarMul R] :
{ x : R // x unitary R } →* Rˣ

The unitary elements embed into the units.

Equations
  • unitary.toUnits = { toFun := fun (x : { x : R // x unitary R }) => { val := x, inv := x⁻¹, val_inv := , inv_val := }, map_one' := , map_mul' := }
theorem unitary.toUnits_injective {R : Type u_1} [Monoid R] [StarMul R] :
Function.Injective unitary.toUnits
theorem IsUnit.mem_unitary_of_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) (h_mul : star u * u = 1) :
theorem IsUnit.mem_unitary_of_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) (h_mul : u * star u = 1) :
instance unitary.instIsStarNormal {R : Type u_1} [Monoid R] [StarMul R] (u : { x : R // x unitary R }) :
Equations
  • =
instance unitary.coe_isStarNormal {R : Type u_1} [Monoid R] [StarMul R] (u : { x : R // x unitary R }) :
Equations
  • =
theorem isStarNormal_of_mem_unitary {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : u unitary R) :
theorem unitary.map_mem {F : Type u_2} {R : Type u_3} {S : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) {r : R} (hr : r unitary R) :
f r unitary S
@[simp]
theorem unitary.map_apply {F : Type u_2} {R : Type u_3} {S : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) :
∀ (a : { x : R // x unitary R }), (unitary.map f) a = Subtype.map f a
def unitary.map {F : Type u_2} {R : Type u_3} {S : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) :
{ x : R // x unitary R } →* { x : S // x unitary S }

The group homomorphism between unitary subgroups of star monoids induced by a star homomorphism

Equations
theorem unitary.toUnits_comp_map {F : Type u_2} {R : Type u_3} {S : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) :
unitary.toUnits.comp (unitary.map f) = (Units.map f).comp unitary.toUnits
Equations
theorem unitary.mem_iff_star_mul_self {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :
U unitary R star U * U = 1
theorem unitary.mem_iff_self_mul_star {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :
U unitary R U * star U = 1
theorem unitary.coe_inv {R : Type u_1} [GroupWithZero R] [StarMul R] (U : { x : R // x unitary R }) :
U⁻¹ = (↑U)⁻¹
theorem unitary.coe_div {R : Type u_1} [GroupWithZero R] [StarMul R] (U₁ : { x : R // x unitary R }) (U₂ : { x : R // x unitary R }) :
(U₁ / U₂) = U₁ / U₂
theorem unitary.coe_zpow {R : Type u_1} [GroupWithZero R] [StarMul R] (U : { x : R // x unitary R }) (z : ) :
(U ^ z) = U ^ z
instance unitary.instNegSubtypeMemSubmonoid {R : Type u_1} [Ring R] [StarRing R] :
Neg { x : R // x unitary R }
Equations
  • unitary.instNegSubtypeMemSubmonoid = { neg := fun (U : { x : R // x unitary R }) => -U, }
theorem unitary.coe_neg {R : Type u_1} [Ring R] [StarRing R] (U : { x : R // x unitary R }) :
(-U) = -U
Equations
@[simp]
theorem unitary.spectrum.unitary_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {u : { x : A // x unitary A }} :
spectrum R (u * a * star u) = spectrum R a

Unitary conjugation preserves the spectrum, star on left.

@[simp]
theorem unitary.spectrum.unitary_conjugate' {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {u : { x : A // x unitary A }} :
spectrum R (star u * a * u) = spectrum R a

Unitary conjugation preserves the spectrum, star on right.