Documentation

Mathlib.Analysis.Analytic.Constructions

Various ways to combine analytic functions #

We show that the following are analytic:

  1. Cartesian products of analytic functions
  2. Arithmetic on analytic functions: mul, smul, inv, div
  3. Finite sums and products: Finset.sum, Finset.prod

Constants are analytic #

theorem hasFPowerSeriesOnBall_const {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {c : F} {e : E} :
theorem hasFPowerSeriesAt_const {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {c : F} {e : E} :
HasFPowerSeriesAt (fun (x : E) => c) (constFormalMultilinearSeries 𝕜 E c) e
theorem analyticAt_const {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {v : F} {x : E} :
AnalyticAt 𝕜 (fun (x : E) => v) x
theorem analyticOn_const {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {v : F} {s : Set E} :
AnalyticOn 𝕜 (fun (x : E) => v) s
theorem analyticWithinAt_const {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {v : F} {s : Set E} {x : E} :
AnalyticWithinAt 𝕜 (fun (x : E) => v) s x
theorem analyticWithinOn_const {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {v : F} {s : Set E} :
AnalyticWithinOn 𝕜 (fun (x : E) => v) s

Addition, negation, subtraction #

theorem HasFPowerSeriesWithinOnBall.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} {r : ENNReal} (hf : HasFPowerSeriesWithinOnBall f pf s x r) (hg : HasFPowerSeriesWithinOnBall g pg s x r) :
HasFPowerSeriesWithinOnBall (f + g) (pf + pg) s x r
theorem HasFPowerSeriesOnBall.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {x : E} {r : ENNReal} (hf : HasFPowerSeriesOnBall f pf x r) (hg : HasFPowerSeriesOnBall g pg x r) :
HasFPowerSeriesOnBall (f + g) (pf + pg) x r
theorem HasFPowerSeriesWithinAt.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} (hf : HasFPowerSeriesWithinAt f pf s x) (hg : HasFPowerSeriesWithinAt g pg s x) :
HasFPowerSeriesWithinAt (f + g) (pf + pg) s x
theorem HasFPowerSeriesAt.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {x : E} (hf : HasFPowerSeriesAt f pf x) (hg : HasFPowerSeriesAt g pg x) :
HasFPowerSeriesAt (f + g) (pf + pg) x
theorem AnalyticWithinAt.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {s : Set E} {x : E} (hf : AnalyticWithinAt 𝕜 f s x) (hg : AnalyticWithinAt 𝕜 g s x) :
AnalyticWithinAt 𝕜 (f + g) s x
theorem AnalyticAt.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {x : E} (hf : AnalyticAt 𝕜 f x) (hg : AnalyticAt 𝕜 g x) :
AnalyticAt 𝕜 (f + g) x
theorem HasFPowerSeriesWithinOnBall.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {pf : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} {r : ENNReal} (hf : HasFPowerSeriesWithinOnBall f pf s x r) :
theorem HasFPowerSeriesOnBall.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {pf : FormalMultilinearSeries 𝕜 E F} {x : E} {r : ENNReal} (hf : HasFPowerSeriesOnBall f pf x r) :
theorem HasFPowerSeriesWithinAt.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {pf : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} (hf : HasFPowerSeriesWithinAt f pf s x) :
theorem HasFPowerSeriesAt.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {pf : FormalMultilinearSeries 𝕜 E F} {x : E} (hf : HasFPowerSeriesAt f pf x) :
theorem AnalyticWithinAt.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {s : Set E} {x : E} (hf : AnalyticWithinAt 𝕜 f s x) :
AnalyticWithinAt 𝕜 (-f) s x
theorem AnalyticAt.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {x : E} (hf : AnalyticAt 𝕜 f x) :
AnalyticAt 𝕜 (-f) x
theorem HasFPowerSeriesWithinOnBall.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} {r : ENNReal} (hf : HasFPowerSeriesWithinOnBall f pf s x r) (hg : HasFPowerSeriesWithinOnBall g pg s x r) :
HasFPowerSeriesWithinOnBall (f - g) (pf - pg) s x r
theorem HasFPowerSeriesOnBall.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {x : E} {r : ENNReal} (hf : HasFPowerSeriesOnBall f pf x r) (hg : HasFPowerSeriesOnBall g pg x r) :
HasFPowerSeriesOnBall (f - g) (pf - pg) x r
theorem HasFPowerSeriesWithinAt.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {s : Set E} {x : E} (hf : HasFPowerSeriesWithinAt f pf s x) (hg : HasFPowerSeriesWithinAt g pg s x) :
HasFPowerSeriesWithinAt (f - g) (pf - pg) s x
theorem HasFPowerSeriesAt.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {pf : FormalMultilinearSeries 𝕜 E F} {pg : FormalMultilinearSeries 𝕜 E F} {x : E} (hf : HasFPowerSeriesAt f pf x) (hg : HasFPowerSeriesAt g pg x) :
HasFPowerSeriesAt (f - g) (pf - pg) x
theorem AnalyticWithinAt.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {s : Set E} {x : E} (hf : AnalyticWithinAt 𝕜 f s x) (hg : AnalyticWithinAt 𝕜 g s x) :
AnalyticWithinAt 𝕜 (f - g) s x
theorem AnalyticAt.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {x : E} (hf : AnalyticAt 𝕜 f x) (hg : AnalyticAt 𝕜 g x) :
AnalyticAt 𝕜 (f - g) x
theorem AnalyticWithinOn.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) (hg : AnalyticWithinOn 𝕜 g s) :
AnalyticWithinOn 𝕜 (f + g) s
theorem AnalyticOn.add {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {s : Set E} (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) :
AnalyticOn 𝕜 (f + g) s
theorem AnalyticWithinOn.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) :
theorem AnalyticOn.neg {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {s : Set E} (hf : AnalyticOn 𝕜 f s) :
AnalyticOn 𝕜 (-f) s
theorem AnalyticWithinOn.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) (hg : AnalyticWithinOn 𝕜 g s) :
AnalyticWithinOn 𝕜 (f - g) s
theorem AnalyticOn.sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {g : EF} {s : Set E} (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) :
AnalyticOn 𝕜 (f - g) s

Cartesian products are analytic #

theorem FormalMultilinearSeries.radius_prod_eq_min {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] (p : FormalMultilinearSeries 𝕜 E F) (q : FormalMultilinearSeries 𝕜 E G) :
(p.prod q).radius = min p.radius q.radius

The radius of the Cartesian product of two formal series is the minimum of their radii.

theorem HasFPowerSeriesWithinOnBall.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {e : E} {f : EF} {g : EG} {r : ENNReal} {s : ENNReal} {t : Set E} {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E G} (hf : HasFPowerSeriesWithinOnBall f p t e r) (hg : HasFPowerSeriesWithinOnBall g q t e s) :
HasFPowerSeriesWithinOnBall (fun (x : E) => (f x, g x)) (p.prod q) t e (min r s)
theorem HasFPowerSeriesOnBall.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {e : E} {f : EF} {g : EG} {r : ENNReal} {s : ENNReal} {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E G} (hf : HasFPowerSeriesOnBall f p e r) (hg : HasFPowerSeriesOnBall g q e s) :
HasFPowerSeriesOnBall (fun (x : E) => (f x, g x)) (p.prod q) e (min r s)
theorem HasFPowerSeriesWithinAt.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {e : E} {f : EF} {g : EG} {s : Set E} {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E G} (hf : HasFPowerSeriesWithinAt f p s e) (hg : HasFPowerSeriesWithinAt g q s e) :
HasFPowerSeriesWithinAt (fun (x : E) => (f x, g x)) (p.prod q) s e
theorem HasFPowerSeriesAt.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {e : E} {f : EF} {g : EG} {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E G} (hf : HasFPowerSeriesAt f p e) (hg : HasFPowerSeriesAt g q e) :
HasFPowerSeriesAt (fun (x : E) => (f x, g x)) (p.prod q) e
theorem AnalyticWithinAt.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {e : E} {f : EF} {g : EG} {s : Set E} (hf : AnalyticWithinAt 𝕜 f s e) (hg : AnalyticWithinAt 𝕜 g s e) :
AnalyticWithinAt 𝕜 (fun (x : E) => (f x, g x)) s e

The Cartesian product of analytic functions is analytic.

theorem AnalyticAt.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {e : E} {f : EF} {g : EG} (hf : AnalyticAt 𝕜 f e) (hg : AnalyticAt 𝕜 g e) :
AnalyticAt 𝕜 (fun (x : E) => (f x, g x)) e

The Cartesian product of analytic functions is analytic.

theorem AnalyticWithinOn.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EF} {g : EG} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) (hg : AnalyticWithinOn 𝕜 g s) :
AnalyticWithinOn 𝕜 (fun (x : E) => (f x, g x)) s

The Cartesian product of analytic functions within a set is analytic.

theorem AnalyticOn.prod {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : EF} {g : EG} {s : Set E} (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) :
AnalyticOn 𝕜 (fun (x : E) => (f x, g x)) s

The Cartesian product of analytic functions is analytic.

theorem AnalyticAt.comp₂ {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedAddCommGroup H] [NormedSpace 𝕜 H] {h : F × GH} {f : EF} {g : EG} {x : E} (ha : AnalyticAt 𝕜 h (f x, g x)) (fa : AnalyticAt 𝕜 f x) (ga : AnalyticAt 𝕜 g x) :
AnalyticAt 𝕜 (fun (x : E) => h (f x, g x)) x

AnalyticAt.comp for functions on product spaces

theorem AnalyticWithinAt.comp₂ {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedAddCommGroup H] [NormedSpace 𝕜 H] {h : F × GH} {f : EF} {g : EG} {s : Set (F × G)} {t : Set E} {x : E} (ha : AnalyticWithinAt 𝕜 h s (f x, g x)) (fa : AnalyticWithinAt 𝕜 f t x) (ga : AnalyticWithinAt 𝕜 g t x) (hf : Set.MapsTo (fun (y : E) => (f y, g y)) t s) :
AnalyticWithinAt 𝕜 (fun (x : E) => h (f x, g x)) t x

AnalyticWithinAt.comp for functions on product spaces

theorem AnalyticAt.comp₂_analyticWithinAt {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedAddCommGroup H] [NormedSpace 𝕜 H] {h : F × GH} {f : EF} {g : EG} {x : E} {s : Set E} (ha : AnalyticAt 𝕜 h (f x, g x)) (fa : AnalyticWithinAt 𝕜 f s x) (ga : AnalyticWithinAt 𝕜 g s x) :
AnalyticWithinAt 𝕜 (fun (x : E) => h (f x, g x)) s x

AnalyticAt.comp_analyticWithinAt for functions on product spaces

theorem AnalyticOn.comp₂ {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedAddCommGroup H] [NormedSpace 𝕜 H] {h : F × GH} {f : EF} {g : EG} {s : Set (F × G)} {t : Set E} (ha : AnalyticOn 𝕜 h s) (fa : AnalyticOn 𝕜 f t) (ga : AnalyticOn 𝕜 g t) (m : xt, (f x, g x) s) :
AnalyticOn 𝕜 (fun (x : E) => h (f x, g x)) t

AnalyticOn.comp for functions on product spaces

theorem AnalyticWithinOn.comp₂ {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedAddCommGroup H] [NormedSpace 𝕜 H] {h : F × GH} {f : EF} {g : EG} {s : Set (F × G)} {t : Set E} (ha : AnalyticWithinOn 𝕜 h s) (fa : AnalyticWithinOn 𝕜 f t) (ga : AnalyticWithinOn 𝕜 g t) (m : Set.MapsTo (fun (y : E) => (f y, g y)) t s) :
AnalyticWithinOn 𝕜 (fun (x : E) => h (f x, g x)) t

AnalyticWithinOn.comp for functions on product spaces

theorem AnalyticAt.curry_left {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {p : E × F} (fa : AnalyticAt 𝕜 f p) :
AnalyticAt 𝕜 (fun (x : E) => f (x, p.2)) p.1

Analytic functions on products are analytic in the first coordinate

theorem AnalyticAt.along_fst {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {p : E × F} (fa : AnalyticAt 𝕜 f p) :
AnalyticAt 𝕜 (fun (x : E) => f (x, p.2)) p.1

Alias of AnalyticAt.curry_left.


Analytic functions on products are analytic in the first coordinate

theorem AnalyticWithinAt.curry_left {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {s : Set (E × F)} {p : E × F} (fa : AnalyticWithinAt 𝕜 f s p) :
AnalyticWithinAt 𝕜 (fun (x : E) => f (x, p.2)) {x : E | (x, p.2) s} p.1
theorem AnalyticAt.curry_right {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {p : E × F} (fa : AnalyticAt 𝕜 f p) :
AnalyticAt 𝕜 (fun (y : F) => f (p.1, y)) p.2

Analytic functions on products are analytic in the second coordinate

theorem AnalyticAt.along_snd {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {p : E × F} (fa : AnalyticAt 𝕜 f p) :
AnalyticAt 𝕜 (fun (y : F) => f (p.1, y)) p.2

Alias of AnalyticAt.curry_right.


Analytic functions on products are analytic in the second coordinate

theorem AnalyticWithinAt.curry_right {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {s : Set (E × F)} {p : E × F} (fa : AnalyticWithinAt 𝕜 f s p) :
AnalyticWithinAt 𝕜 (fun (y : F) => f (p.1, y)) {y : F | (p.1, y) s} p.2
theorem AnalyticOn.curry_left {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {s : Set (E × F)} {y : F} (fa : AnalyticOn 𝕜 f s) :
AnalyticOn 𝕜 (fun (x : E) => f (x, y)) {x : E | (x, y) s}

Analytic functions on products are analytic in the first coordinate

theorem AnalyticOn.along_fst {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {s : Set (E × F)} {y : F} (fa : AnalyticOn 𝕜 f s) :
AnalyticOn 𝕜 (fun (x : E) => f (x, y)) {x : E | (x, y) s}

Alias of AnalyticOn.curry_left.


Analytic functions on products are analytic in the first coordinate

theorem AnalyticWithinOn.curry_left {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {s : Set (E × F)} {y : F} (fa : AnalyticWithinOn 𝕜 f s) :
AnalyticWithinOn 𝕜 (fun (x : E) => f (x, y)) {x : E | (x, y) s}
theorem AnalyticOn.curry_right {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {x : E} {s : Set (E × F)} (fa : AnalyticOn 𝕜 f s) :
AnalyticOn 𝕜 (fun (y : F) => f (x, y)) {y : F | (x, y) s}

Analytic functions on products are analytic in the second coordinate

theorem AnalyticOn.along_snd {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {x : E} {s : Set (E × F)} (fa : AnalyticOn 𝕜 f s) :
AnalyticOn 𝕜 (fun (y : F) => f (x, y)) {y : F | (x, y) s}

Alias of AnalyticOn.curry_right.


Analytic functions on products are analytic in the second coordinate

theorem AnalyticWithinOn.curry_right {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {f : E × FG} {x : E} {s : Set (E × F)} (fa : AnalyticWithinOn 𝕜 f s) :
AnalyticWithinOn 𝕜 (fun (y : F) => f (x, y)) {y : F | (x, y) s}

Analyticity in Pi spaces #

In this section, f : Π i, E → Fm i is a family of functions, i.e., each f i is a function, from E to a space Fm i. We discuss whether the family as a whole is analytic as a function of x : E, i.e., whether x ↦ (f 1 x, ..., f n x) is analytic from E to the product space Π i, Fm i. This function is denoted either by fun x ↦ (fun i ↦ f i x), or fun x i ↦ f i x, or fun x ↦ (f ⬝ x). We use the latter spelling in the statements, for readability purposes.

theorem FormalMultilinearSeries.radius_pi_le {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] (p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)) (i : ι) :
(FormalMultilinearSeries.pi p).radius (p i).radius
theorem FormalMultilinearSeries.le_radius_pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {r : ENNReal} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (h : ∀ (i : ι), r (p i).radius) :
theorem FormalMultilinearSeries.radius_pi_eq_iInf {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} :
(FormalMultilinearSeries.pi p).radius = ⨅ (i : ι), (p i).radius
theorem HasFPowerSeriesWithinOnBall.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} {r : ENNReal} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (hf : ∀ (i : ι), HasFPowerSeriesWithinOnBall (f i) (p i) s e r) (hr : 0 < r) :
HasFPowerSeriesWithinOnBall (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) s e r

If each function in a finite family has a power series within a ball, then so does the family as a whole. Note that the positivity assumption on the radius is only needed when the family is empty.

theorem hasFPowerSeriesWithinOnBall_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} {r : ENNReal} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (hr : 0 < r) :
HasFPowerSeriesWithinOnBall (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) s e r ∀ (i : ι), HasFPowerSeriesWithinOnBall (f i) (p i) s e r
theorem HasFPowerSeriesOnBall.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {r : ENNReal} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (hf : ∀ (i : ι), HasFPowerSeriesOnBall (f i) (p i) e r) (hr : 0 < r) :
HasFPowerSeriesOnBall (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) e r
theorem hasFPowerSeriesOnBall_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {r : ENNReal} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (hr : 0 < r) :
HasFPowerSeriesOnBall (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) e r ∀ (i : ι), HasFPowerSeriesOnBall (f i) (p i) e r
theorem HasFPowerSeriesWithinAt.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (hf : ∀ (i : ι), HasFPowerSeriesWithinAt (f i) (p i) s e) :
HasFPowerSeriesWithinAt (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) s e
theorem hasFPowerSeriesWithinAt_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} :
HasFPowerSeriesWithinAt (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) s e ∀ (i : ι), HasFPowerSeriesWithinAt (f i) (p i) s e
theorem HasFPowerSeriesAt.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} (hf : ∀ (i : ι), HasFPowerSeriesAt (f i) (p i) e) :
HasFPowerSeriesAt (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) e
theorem hasFPowerSeriesAt_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {p : (i : ι) → FormalMultilinearSeries 𝕜 E (Fm i)} :
HasFPowerSeriesAt (fun (x : E) (x_1 : ι) => f x_1 x) (FormalMultilinearSeries.pi p) e ∀ (i : ι), HasFPowerSeriesAt (f i) (p i) e
theorem AnalyticWithinAt.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} (hf : ∀ (i : ι), AnalyticWithinAt 𝕜 (f i) s e) :
AnalyticWithinAt 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) s e
theorem analyticWithinAt_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} :
AnalyticWithinAt 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) s e ∀ (i : ι), AnalyticWithinAt 𝕜 (f i) s e
theorem AnalyticAt.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} (hf : ∀ (i : ι), AnalyticAt 𝕜 (f i) e) :
AnalyticAt 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) e
theorem analyticAt_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {e : E} {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} :
AnalyticAt 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) e ∀ (i : ι), AnalyticAt 𝕜 (f i) e
theorem AnalyticWithinOn.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} (hf : ∀ (i : ι), AnalyticWithinOn 𝕜 (f i) s) :
AnalyticWithinOn 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) s
theorem analyticWithinOn_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} :
AnalyticWithinOn 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) s ∀ (i : ι), AnalyticWithinOn 𝕜 (f i) s
theorem AnalyticOn.pi {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} (hf : ∀ (i : ι), AnalyticOn 𝕜 (f i) s) :
AnalyticOn 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) s
theorem analyticOn_pi_iff {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_9} [Fintype ι] {Fm : ιType u_10} [(i : ι) → NormedAddCommGroup (Fm i)] [(i : ι) → NormedSpace 𝕜 (Fm i)] {f : (i : ι) → EFm i} {s : Set E} :
AnalyticOn 𝕜 (fun (x : E) (x_1 : ι) => f x_1 x) s ∀ (i : ι), AnalyticOn 𝕜 (f i) s

Arithmetic on analytic functions #

theorem analyticAt_smul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] [NormedSpace 𝕝 E] [IsScalarTower 𝕜 𝕝 E] (z : 𝕝 × E) :
AnalyticAt 𝕜 (fun (x : 𝕝 × E) => x.1 x.2) z

Scalar multiplication is analytic (jointly in both variables). The statement is a little pedantic to allow towers of field extensions.

TODO: can we replace 𝕜' with a "normed module" in such a way that analyticAt_mul is a special case of this?

theorem analyticAt_mul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] (z : A × A) :
AnalyticAt 𝕜 (fun (x : A × A) => x.1 * x.2) z

Multiplication in a normed algebra over 𝕜 is analytic.

theorem AnalyticWithinAt.smul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] [NormedSpace 𝕝 F] [IsScalarTower 𝕜 𝕝 F] {f : E𝕝} {g : EF} {s : Set E} {z : E} (hf : AnalyticWithinAt 𝕜 f s z) (hg : AnalyticWithinAt 𝕜 g s z) :
AnalyticWithinAt 𝕜 (fun (x : E) => f x g x) s z

Scalar multiplication of one analytic function by another.

theorem AnalyticAt.smul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] [NormedSpace 𝕝 F] [IsScalarTower 𝕜 𝕝 F] {f : E𝕝} {g : EF} {z : E} (hf : AnalyticAt 𝕜 f z) (hg : AnalyticAt 𝕜 g z) :
AnalyticAt 𝕜 (fun (x : E) => f x g x) z

Scalar multiplication of one analytic function by another.

theorem AnalyticWithinOn.smul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] [NormedSpace 𝕝 F] [IsScalarTower 𝕜 𝕝 F] {f : E𝕝} {g : EF} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) (hg : AnalyticWithinOn 𝕜 g s) :
AnalyticWithinOn 𝕜 (fun (x : E) => f x g x) s

Scalar multiplication of one analytic function by another.

theorem AnalyticOn.smul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] [NormedSpace 𝕝 F] [IsScalarTower 𝕜 𝕝 F] {f : E𝕝} {g : EF} {s : Set E} (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) :
AnalyticOn 𝕜 (fun (x : E) => f x g x) s

Scalar multiplication of one analytic function by another.

theorem AnalyticWithinAt.mul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {g : EA} {s : Set E} {z : E} (hf : AnalyticWithinAt 𝕜 f s z) (hg : AnalyticWithinAt 𝕜 g s z) :
AnalyticWithinAt 𝕜 (fun (x : E) => f x * g x) s z

Multiplication of analytic functions (valued in a normed 𝕜-algebra) is analytic.

theorem AnalyticAt.mul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {g : EA} {z : E} (hf : AnalyticAt 𝕜 f z) (hg : AnalyticAt 𝕜 g z) :
AnalyticAt 𝕜 (fun (x : E) => f x * g x) z

Multiplication of analytic functions (valued in a normed 𝕜-algebra) is analytic.

theorem AnalyticWithinOn.mul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {g : EA} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) (hg : AnalyticWithinOn 𝕜 g s) :
AnalyticWithinOn 𝕜 (fun (x : E) => f x * g x) s

Multiplication of analytic functions (valued in a normed 𝕜-algebra) is analytic.

theorem AnalyticOn.mul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {g : EA} {s : Set E} (hf : AnalyticOn 𝕜 f s) (hg : AnalyticOn 𝕜 g s) :
AnalyticOn 𝕜 (fun (x : E) => f x * g x) s

Multiplication of analytic functions (valued in a normed 𝕜-algebra) is analytic.

theorem AnalyticWithinAt.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {z : E} {s : Set E} (hf : AnalyticWithinAt 𝕜 f s z) (n : ) :
AnalyticWithinAt 𝕜 (fun (x : E) => f x ^ n) s z

Powers of analytic functions (into a normed 𝕜-algebra) are analytic.

theorem AnalyticAt.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {z : E} (hf : AnalyticAt 𝕜 f z) (n : ) :
AnalyticAt 𝕜 (fun (x : E) => f x ^ n) z

Powers of analytic functions (into a normed 𝕜-algebra) are analytic.

theorem AnalyticWithinOn.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {s : Set E} (hf : AnalyticWithinOn 𝕜 f s) (n : ) :
AnalyticWithinOn 𝕜 (fun (x : E) => f x ^ n) s

Powers of analytic functions (into a normed 𝕜-algebra) are analytic.

theorem AnalyticOn.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_8} [NormedRing A] [NormedAlgebra 𝕜 A] {f : EA} {s : Set E} (hf : AnalyticOn 𝕜 f s) (n : ) :
AnalyticOn 𝕜 (fun (x : E) => f x ^ n) s

Powers of analytic functions (into a normed 𝕜-algebra) are analytic.

The geometric series 1 + x + x ^ 2 + ... as a FormalMultilinearSeries.

Equations
Instances For
    theorem hasFPowerSeriesOnBall_inv_one_sub (𝕜 : Type u_9) (𝕝 : Type u_10) [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] :
    HasFPowerSeriesOnBall (fun (x : 𝕝) => (1 - x)⁻¹) (formalMultilinearSeries_geometric 𝕜 𝕝) 0 1
    theorem analyticAt_inv_one_sub {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] (𝕝 : Type u_9) [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] :
    AnalyticAt 𝕜 (fun (x : 𝕝) => (1 - x)⁻¹) 0
    theorem analyticAt_inv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {z : 𝕝} (hz : z 0) :
    AnalyticAt 𝕜 Inv.inv z

    If 𝕝 is a normed field extension of 𝕜, then the inverse map 𝕝 → 𝕝 is 𝕜-analytic away from 0.

    theorem analyticOn_inv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] :
    AnalyticOn 𝕜 (fun (z : 𝕝) => z⁻¹) {z : 𝕝 | z 0}

    x⁻¹ is analytic away from zero

    theorem AnalyticWithinAt.inv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {x : E} {s : Set E} (fa : AnalyticWithinAt 𝕜 f s x) (f0 : f x 0) :
    AnalyticWithinAt 𝕜 (fun (x : E) => (f x)⁻¹) s x

    (f x)⁻¹ is analytic away from f x = 0

    theorem AnalyticAt.inv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {x : E} (fa : AnalyticAt 𝕜 f x) (f0 : f x 0) :
    AnalyticAt 𝕜 (fun (x : E) => (f x)⁻¹) x

    (f x)⁻¹ is analytic away from f x = 0

    theorem AnalyticWithinOn.inv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {s : Set E} (fa : AnalyticWithinOn 𝕜 f s) (f0 : xs, f x 0) :
    AnalyticWithinOn 𝕜 (fun (x : E) => (f x)⁻¹) s

    (f x)⁻¹ is analytic away from f x = 0

    theorem AnalyticOn.inv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {s : Set E} (fa : AnalyticOn 𝕜 f s) (f0 : xs, f x 0) :
    AnalyticOn 𝕜 (fun (x : E) => (f x)⁻¹) s

    (f x)⁻¹ is analytic away from f x = 0

    theorem AnalyticWithinAt.div {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {g : E𝕝} {s : Set E} {x : E} (fa : AnalyticWithinAt 𝕜 f s x) (ga : AnalyticWithinAt 𝕜 g s x) (g0 : g x 0) :
    AnalyticWithinAt 𝕜 (fun (x : E) => f x / g x) s x

    f x / g x is analytic away from g x = 0

    theorem AnalyticAt.div {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {g : E𝕝} {x : E} (fa : AnalyticAt 𝕜 f x) (ga : AnalyticAt 𝕜 g x) (g0 : g x 0) :
    AnalyticAt 𝕜 (fun (x : E) => f x / g x) x

    f x / g x is analytic away from g x = 0

    theorem AnalyticWithinOn.div {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {g : E𝕝} {s : Set E} (fa : AnalyticWithinOn 𝕜 f s) (ga : AnalyticWithinOn 𝕜 g s) (g0 : xs, g x 0) :
    AnalyticWithinOn 𝕜 (fun (x : E) => f x / g x) s

    f x / g x is analytic away from g x = 0

    theorem AnalyticOn.div {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra 𝕜 𝕝] {f : E𝕝} {g : E𝕝} {s : Set E} (fa : AnalyticOn 𝕜 f s) (ga : AnalyticOn 𝕜 g s) (g0 : xs, g x 0) :
    AnalyticOn 𝕜 (fun (x : E) => f x / g x) s

    f x / g x is analytic away from g x = 0

    Finite sums and products of analytic functions #

    theorem Finset.analyticWithinAt_sum {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : αEF} {c : E} {s : Set E} (N : Finset α) (h : nN, AnalyticWithinAt 𝕜 (f n) s c) :
    AnalyticWithinAt 𝕜 (fun (z : E) => nN, f n z) s c

    Finite sums of analytic functions are analytic

    theorem Finset.analyticAt_sum {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : αEF} {c : E} (N : Finset α) (h : nN, AnalyticAt 𝕜 (f n) c) :
    AnalyticAt 𝕜 (fun (z : E) => nN, f n z) c

    Finite sums of analytic functions are analytic

    theorem Finset.analyticWithinOn_sum {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : αEF} {s : Set E} (N : Finset α) (h : nN, AnalyticWithinOn 𝕜 (f n) s) :
    AnalyticWithinOn 𝕜 (fun (z : E) => nN, f n z) s

    Finite sums of analytic functions are analytic

    theorem Finset.analyticOn_sum {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : αEF} {s : Set E} (N : Finset α) (h : nN, AnalyticOn 𝕜 (f n) s) :
    AnalyticOn 𝕜 (fun (z : E) => nN, f n z) s

    Finite sums of analytic functions are analytic

    theorem Finset.analyticWithinAt_prod {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_9} [NormedCommRing A] [NormedAlgebra 𝕜 A] {f : αEA} {c : E} {s : Set E} (N : Finset α) (h : nN, AnalyticWithinAt 𝕜 (f n) s c) :
    AnalyticWithinAt 𝕜 (fun (z : E) => nN, f n z) s c

    Finite products of analytic functions are analytic

    theorem Finset.analyticAt_prod {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_9} [NormedCommRing A] [NormedAlgebra 𝕜 A] {f : αEA} {c : E} (N : Finset α) (h : nN, AnalyticAt 𝕜 (f n) c) :
    AnalyticAt 𝕜 (fun (z : E) => nN, f n z) c

    Finite products of analytic functions are analytic

    theorem Finset.analyticWithinOn_prod {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_9} [NormedCommRing A] [NormedAlgebra 𝕜 A] {f : αEA} {s : Set E} (N : Finset α) (h : nN, AnalyticWithinOn 𝕜 (f n) s) :
    AnalyticWithinOn 𝕜 (fun (z : E) => nN, f n z) s

    Finite products of analytic functions are analytic

    theorem Finset.analyticOn_prod {α : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {A : Type u_9} [NormedCommRing A] [NormedAlgebra 𝕜 A] {f : αEA} {s : Set E} (N : Finset α) (h : nN, AnalyticOn 𝕜 (f n) s) :
    AnalyticOn 𝕜 (fun (z : E) => nN, f n z) s

    Finite products of analytic functions are analytic