Linear functions are analytic #
In this file we prove that a ContinuousLinearMap
defines an analytic function with
the formal power series f x = f a + f (x - a)
. We also prove similar results for bilinear maps.
TODO: port to use CPolynomial
, and prove the stronger result that continuous linear maps are
continuously polynomial
@[simp]
theorem
ContinuousLinearMap.fpowerSeries_radius
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
theorem
ContinuousLinearMap.hasFPowerSeriesOnBall
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
HasFPowerSeriesOnBall (βf) (f.fpowerSeries x) x β€
theorem
ContinuousLinearMap.hasFPowerSeriesAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
HasFPowerSeriesAt (βf) (f.fpowerSeries x) x
theorem
ContinuousLinearMap.analyticAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
AnalyticAt π (βf) x
theorem
ContinuousLinearMap.analyticOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
:
AnalyticOn π (βf) s
theorem
ContinuousLinearMap.analyticWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
(x : E)
:
AnalyticWithinAt π (βf) s x
theorem
ContinuousLinearMap.analyticWithinOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
:
AnalyticWithinOn π (βf) s
def
ContinuousLinearMap.uncurryBilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
:
ContinuousMultilinearMap π (fun (i : Fin 2) => E Γ F) G
Reinterpret a bilinear map f : E βL[π] F βL[π] G
as a multilinear map
(E Γ F) [Γ2]βL[π] G
. This multilinear map is the second term in the formal
multilinear series expansion of uncurry f
. It is given by
f.uncurryBilinear ![(x, y), (x', y')] = f x y'
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ContinuousLinearMap.uncurryBilinear_apply
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(m : Fin 2 β E Γ F)
:
f.uncurryBilinear m = (f (m 0).1) (m 1).2
def
ContinuousLinearMap.fpowerSeriesBilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
FormalMultilinearSeries π (E Γ F) G
Formal multilinear series expansion of a bilinear function f : E βL[π] F βL[π] G
.
Equations
- f.fpowerSeriesBilinear x 0 = ContinuousMultilinearMap.uncurry0 π (E Γ F) ((f x.1) x.2)
- f.fpowerSeriesBilinear x 1 = (continuousMultilinearCurryFin1 π (E Γ F) G).symm (f.derivβ x)
- f.fpowerSeriesBilinear x 2 = f.uncurryBilinear
- f.fpowerSeriesBilinear xβ x = 0
Instances For
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
f.fpowerSeriesBilinear x 0 = ContinuousMultilinearMap.uncurry0 π (E Γ F) ((f x.1) x.2)
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
f.fpowerSeriesBilinear x 1 = (continuousMultilinearCurryFin1 π (E Γ F) G).symm (f.derivβ x)
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_two
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
f.fpowerSeriesBilinear x 2 = f.uncurryBilinear
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
(n : β)
:
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_radius
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
theorem
ContinuousLinearMap.hasFPowerSeriesOnBall_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
HasFPowerSeriesOnBall (fun (x : E Γ F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x β€
theorem
ContinuousLinearMap.hasFPowerSeriesAt_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
HasFPowerSeriesAt (fun (x : E Γ F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x
theorem
ContinuousLinearMap.analyticAt_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
AnalyticAt π (fun (x : E Γ F) => (f x.1) x.2) x
theorem
ContinuousLinearMap.analyticOn_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(s : Set (E Γ F))
:
AnalyticOn π (fun (x : E Γ F) => (f x.1) x.2) s
theorem
analyticAt_id
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{z : E}
:
AnalyticAt π id z
theorem
analyticWithinAt_id
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{s : Set E}
{z : E}
:
AnalyticWithinAt π id s z
theorem
analyticOn_id
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{s : Set E}
:
AnalyticOn π (fun (x : E) => x) s
id
is entire
theorem
analyticWithinOn_id
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{s : Set E}
:
AnalyticWithinOn π (fun (x : E) => x) s
theorem
analyticAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
AnalyticAt π (fun (p : E Γ F) => p.1) p
fst
is analytic
theorem
analyticWithinAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{t : Set (E Γ F)}
{p : E Γ F}
:
AnalyticWithinAt π (fun (p : E Γ F) => p.1) t p
theorem
analyticAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
AnalyticAt π (fun (p : E Γ F) => p.2) p
snd
is analytic
theorem
analyticWithinAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{t : Set (E Γ F)}
{p : E Γ F}
:
AnalyticWithinAt π (fun (p : E Γ F) => p.2) t p
theorem
analyticOn_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{t : Set (E Γ F)}
:
AnalyticOn π (fun (p : E Γ F) => p.1) t
fst
is entire
theorem
analyticWithinOn_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{t : Set (E Γ F)}
:
AnalyticWithinOn π (fun (p : E Γ F) => p.1) t
theorem
analyticOn_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{t : Set (E Γ F)}
:
AnalyticOn π (fun (p : E Γ F) => p.2) t
snd
is entire
theorem
analyticWithinOn_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{t : Set (E Γ F)}
:
AnalyticWithinOn π (fun (p : E Γ F) => p.2) t
theorem
ContinuousLinearEquiv.analyticAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
AnalyticAt π (βf) x
theorem
ContinuousLinearEquiv.analyticOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
:
AnalyticOn π (βf) s
theorem
ContinuousLinearEquiv.analyticWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
(x : E)
:
AnalyticWithinAt π (βf) s x
theorem
ContinuousLinearEquiv.analyticWithinOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
:
AnalyticWithinOn π (βf) s
theorem
LinearIsometryEquiv.analyticAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E ββα΅’[π] F)
(x : E)
:
AnalyticAt π (βf) x
theorem
LinearIsometryEquiv.analyticOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E ββα΅’[π] F)
(s : Set E)
:
AnalyticOn π (βf) s
theorem
LinearIsometryEquiv.analyticWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
(x : E)
:
AnalyticWithinAt π (βf) s x
theorem
LinearIsometryEquiv.analyticWithinOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(s : Set E)
:
AnalyticWithinOn π (βf) s