Documentation

Mathlib.Analysis.Analytic.Linear

Linear functions are analytic #

In this file we prove that a ContinuousLinearMap defines an analytic function with the formal power series f x = f a + f (x - a). We also prove similar results for bilinear maps.

TODO: port to use CPolynomial, and prove the stronger result that continuous linear maps are continuously polynomial

@[simp]
theorem ContinuousLinearMap.fpowerSeries_radius {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (x : E) :
(f.fpowerSeries x).radius = ⊀
theorem ContinuousLinearMap.hasFPowerSeriesOnBall {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (x : E) :
HasFPowerSeriesOnBall (⇑f) (f.fpowerSeries x) x ⊀
theorem ContinuousLinearMap.hasFPowerSeriesAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (x : E) :
HasFPowerSeriesAt (⇑f) (f.fpowerSeries x) x
theorem ContinuousLinearMap.analyticAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (x : E) :
AnalyticAt π•œ (⇑f) x
theorem ContinuousLinearMap.analyticOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) :
AnalyticOn π•œ (⇑f) s
theorem ContinuousLinearMap.analyticWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) (x : E) :
AnalyticWithinAt π•œ (⇑f) s x
theorem ContinuousLinearMap.analyticWithinOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) :
AnalyticWithinOn π•œ (⇑f) s
def ContinuousLinearMap.uncurryBilinear {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) :
ContinuousMultilinearMap π•œ (fun (i : Fin 2) => E Γ— F) G

Reinterpret a bilinear map f : E β†’L[π•œ] F β†’L[π•œ] G as a multilinear map (E Γ— F) [Γ—2]β†’L[π•œ] G. This multilinear map is the second term in the formal multilinear series expansion of uncurry f. It is given by f.uncurryBilinear ![(x, y), (x', y')] = f x y'.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem ContinuousLinearMap.uncurryBilinear_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (m : Fin 2 β†’ E Γ— F) :
    f.uncurryBilinear m = (f (m 0).1) (m 1).2
    def ContinuousLinearMap.fpowerSeriesBilinear {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
    FormalMultilinearSeries π•œ (E Γ— F) G

    Formal multilinear series expansion of a bilinear function f : E β†’L[π•œ] F β†’L[π•œ] G.

    Equations
    Instances For
      @[simp]
      theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_zero {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      f.fpowerSeriesBilinear x 0 = ContinuousMultilinearMap.uncurry0 π•œ (E Γ— F) ((f x.1) x.2)
      @[simp]
      theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_one {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      f.fpowerSeriesBilinear x 1 = (continuousMultilinearCurryFin1 π•œ (E Γ— F) G).symm (f.derivβ‚‚ x)
      @[simp]
      theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_two {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      f.fpowerSeriesBilinear x 2 = f.uncurryBilinear
      @[simp]
      theorem ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) (n : β„•) :
      f.fpowerSeriesBilinear x (n + 3) = 0
      @[simp]
      theorem ContinuousLinearMap.fpowerSeriesBilinear_radius {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      (f.fpowerSeriesBilinear x).radius = ⊀
      theorem ContinuousLinearMap.hasFPowerSeriesOnBall_bilinear {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      HasFPowerSeriesOnBall (fun (x : E Γ— F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x ⊀
      theorem ContinuousLinearMap.hasFPowerSeriesAt_bilinear {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      HasFPowerSeriesAt (fun (x : E Γ— F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x
      theorem ContinuousLinearMap.analyticAt_bilinear {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (x : E Γ— F) :
      AnalyticAt π•œ (fun (x : E Γ— F) => (f x.1) x.2) x
      theorem ContinuousLinearMap.analyticOn_bilinear {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π•œ G] (f : E β†’L[π•œ] F β†’L[π•œ] G) (s : Set (E Γ— F)) :
      AnalyticOn π•œ (fun (x : E Γ— F) => (f x.1) x.2) s
      theorem analyticAt_id {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {z : E} :
      AnalyticAt π•œ id z
      theorem analyticWithinAt_id {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {s : Set E} {z : E} :
      AnalyticWithinAt π•œ id s z
      theorem analyticOn_id {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {s : Set E} :
      AnalyticOn π•œ (fun (x : E) => x) s

      id is entire

      theorem analyticWithinOn_id {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {s : Set E} :
      AnalyticWithinOn π•œ (fun (x : E) => x) s
      theorem analyticAt_fst {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : E Γ— F} :
      AnalyticAt π•œ (fun (p : E Γ— F) => p.1) p

      fst is analytic

      theorem analyticWithinAt_fst {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {t : Set (E Γ— F)} {p : E Γ— F} :
      AnalyticWithinAt π•œ (fun (p : E Γ— F) => p.1) t p
      theorem analyticAt_snd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : E Γ— F} :
      AnalyticAt π•œ (fun (p : E Γ— F) => p.2) p

      snd is analytic

      theorem analyticWithinAt_snd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {t : Set (E Γ— F)} {p : E Γ— F} :
      AnalyticWithinAt π•œ (fun (p : E Γ— F) => p.2) t p
      theorem analyticOn_fst {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {t : Set (E Γ— F)} :
      AnalyticOn π•œ (fun (p : E Γ— F) => p.1) t

      fst is entire

      theorem analyticWithinOn_fst {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {t : Set (E Γ— F)} :
      AnalyticWithinOn π•œ (fun (p : E Γ— F) => p.1) t
      theorem analyticOn_snd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {t : Set (E Γ— F)} :
      AnalyticOn π•œ (fun (p : E Γ— F) => p.2) t

      snd is entire

      theorem analyticWithinOn_snd {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {t : Set (E Γ— F)} :
      AnalyticWithinOn π•œ (fun (p : E Γ— F) => p.2) t
      theorem ContinuousLinearEquiv.analyticAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E ≃L[π•œ] F) (x : E) :
      AnalyticAt π•œ (⇑f) x
      theorem ContinuousLinearEquiv.analyticOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E ≃L[π•œ] F) (s : Set E) :
      AnalyticOn π•œ (⇑f) s
      theorem ContinuousLinearEquiv.analyticWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) (x : E) :
      AnalyticWithinAt π•œ (⇑f) s x
      theorem ContinuousLinearEquiv.analyticWithinOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) :
      AnalyticWithinOn π•œ (⇑f) s
      theorem LinearIsometryEquiv.analyticAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E ≃ₗᡒ[π•œ] F) (x : E) :
      AnalyticAt π•œ (⇑f) x
      theorem LinearIsometryEquiv.analyticOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E ≃ₗᡒ[π•œ] F) (s : Set E) :
      AnalyticOn π•œ (⇑f) s
      theorem LinearIsometryEquiv.analyticWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) (x : E) :
      AnalyticWithinAt π•œ (⇑f) s x
      theorem LinearIsometryEquiv.analyticWithinOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E β†’L[π•œ] F) (s : Set E) :
      AnalyticWithinOn π•œ (⇑f) s