Locally surjective maps of presheaves. #
Let X be a topological space, ℱ and 𝒢 presheaves on X, T : ℱ ⟶ 𝒢 a map.
In this file we formulate two notions for what it means for
T to be locally surjective:
For each open set
U, each sectiont : 𝒢(U)is in the image ofTafter passing to some open cover ofU.For each
x : X, the map of stalksTₓ : ℱₓ ⟶ 𝒢ₓis surjective.
We prove that these are equivalent.
def
TopCat.Presheaf.IsLocallySurjective
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{FC : C → C → Type u_1}
{CC : C → Type v}
[(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)]
[CategoryTheory.ConcreteCategory C FC]
{X : TopCat}
{ℱ 𝒢 : Presheaf C X}
(T : ℱ ⟶ 𝒢)
:
A map of presheaves T : ℱ ⟶ 𝒢 is locally surjective if for any open set U,
section t over U, and x ∈ U, there exists an open set x ∈ V ⊆ U and a section s over V
such that $T_*(s_V) = t|_V$.
See TopCat.Presheaf.isLocallySurjective_iff below.
Equations
Instances For
theorem
TopCat.Presheaf.isLocallySurjective_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{FC : C → C → Type u_1}
{CC : C → Type v}
[(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)]
[CategoryTheory.ConcreteCategory C FC]
{X : TopCat}
{ℱ 𝒢 : Presheaf C X}
(T : ℱ ⟶ 𝒢)
:
IsLocallySurjective T ↔ ∀ (U : TopologicalSpace.Opens ↑X) (t : CategoryTheory.ToType (𝒢.obj (Opposite.op U))),
∀ x ∈ U,
∃ (V : TopologicalSpace.Opens ↑X) (ι : V ⟶ U),
(∃ (s : CC (ℱ.obj (Opposite.op V))),
(CategoryTheory.ConcreteCategory.hom (T.app (Opposite.op V))) s = restrict t ι) ∧ x ∈ V
theorem
TopCat.Presheaf.locally_surjective_iff_surjective_on_stalks
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{FC : C → C → Type u_1}
{CC : C → Type v}
[(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)]
[CategoryTheory.ConcreteCategory C FC]
{X : TopCat}
{ℱ 𝒢 : Presheaf C X}
[CategoryTheory.Limits.HasColimits C]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget C)]
(T : ℱ ⟶ 𝒢)
:
IsLocallySurjective T ↔ ∀ (x : ↑X), Function.Surjective ⇑(CategoryTheory.ConcreteCategory.hom ((stalkFunctor C x).map T))
An equivalent condition for a map of presheaves to be locally surjective is for all the induced maps on stalks to be surjective.