Category instance for topological spaces #
We introduce the bundled category TopCat
of topological spaces together with the functors
TopCat.discrete
and TopCat.trivial
from the category of types to TopCat
which equip a type
with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left,
resp. right adjoint to the forgetful functor, see Mathlib.Topology.Category.TopCat.Adjunctions
.
The category of topological spaces and continuous maps.
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- TopCat.instCoeSortType = { coe := fun (X : TopCat) => ↑X }
Equations
- X.topologicalSpaceUnbundled = X.str
Equations
- ⋯ = ⋯
theorem
TopCat.comp_app
{X : TopCat}
{Y : TopCat}
{Z : TopCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(x : ↑X)
:
(CategoryTheory.CategoryStruct.comp f g) x = g (f x)
@[simp]
theorem
TopCat.coe_comp
{X : TopCat}
{Y : TopCat}
{Z : TopCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
⇑(CategoryTheory.CategoryStruct.comp f g) = ⇑g ∘ ⇑f
Equations
- X.topologicalSpace_coe = X.str
@[reducible, inline]
instance
TopCat.topologicalSpace_forget
(X : TopCat)
:
TopologicalSpace ((CategoryTheory.forget TopCat).obj X)
Equations
- X.topologicalSpace_forget = X.str
@[simp]
theorem
TopCat.coe_of_of
{X : Type u}
{Y : Type u}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : C(X, Y)}
{x : (CategoryTheory.forget TopCat).obj (TopCat.of X)}
:
f x = f x
Replace a function coercion for a morphism TopCat.of X ⟶ TopCat.of Y
with the definitionally
equal function coercion for a continuous map C(X, Y)
.
Equations
- TopCat.inhabited = { default := TopCat.of Empty }
The discrete topology on any type.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
TopCat.instDiscreteTopologyαTopologicalSpaceObjDiscrete
{X : Type u}
:
DiscreteTopology ↑(TopCat.discrete.obj X)
Equations
- ⋯ = ⋯
The trivial topology on any type.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
TopCat.isoOfHomeo_inv
{X : TopCat}
{Y : TopCat}
(f : ↑X ≃ₜ ↑Y)
:
(TopCat.isoOfHomeo f).inv = f.symm.toContinuousMap
@[simp]
theorem
TopCat.isoOfHomeo_hom
{X : TopCat}
{Y : TopCat}
(f : ↑X ≃ₜ ↑Y)
:
(TopCat.isoOfHomeo f).hom = f.toContinuousMap
Any homeomorphisms induces an isomorphism in Top
.
Equations
- TopCat.isoOfHomeo f = { hom := f.toContinuousMap, inv := f.symm.toContinuousMap, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
TopCat.homeoOfIso_symm_apply
{X : TopCat}
{Y : TopCat}
(f : X ≅ Y)
(a : ↑Y)
:
(TopCat.homeoOfIso f).symm a = f.inv a
@[simp]
theorem
TopCat.homeoOfIso_apply
{X : TopCat}
{Y : TopCat}
(f : X ≅ Y)
(a : ↑X)
:
(TopCat.homeoOfIso f) a = f.hom a
Any isomorphism in Top
induces a homeomorphism.
Equations
- TopCat.homeoOfIso f = { toFun := ⇑f.hom, invFun := ⇑f.inv, left_inv := ⋯, right_inv := ⋯, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
@[simp]
theorem
TopCat.openEmbedding_iff_comp_isIso
{X : TopCat}
{Y : TopCat}
{Z : TopCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryTheory.IsIso g]
:
@[simp]
theorem
TopCat.openEmbedding_iff_comp_isIso'
{X : TopCat}
{Y : TopCat}
{Z : TopCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryTheory.IsIso g]
:
OpenEmbedding
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.forget TopCat).map f) ((CategoryTheory.forget TopCat).map g)) ↔ OpenEmbedding ⇑f
theorem
TopCat.openEmbedding_iff_isIso_comp
{X : TopCat}
{Y : TopCat}
{Z : TopCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryTheory.IsIso f]
:
@[simp]
theorem
TopCat.openEmbedding_iff_isIso_comp'
{X : TopCat}
{Y : TopCat}
{Z : TopCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[CategoryTheory.IsIso f]
:
OpenEmbedding
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.forget TopCat).map f) ((CategoryTheory.forget TopCat).map g)) ↔ OpenEmbedding ⇑g