Nöbeling's theorem #
This file proves Nöbeling's theorem. For the overall proof outline see
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean.
Main result #
LocallyConstant.freeOfProfinite: Nöbeling's theorem. ForS : Profinite, theℤ-moduleLocallyConstant S ℤis free.
References #
- [scholze2019condensed], Theorem 5.4.
The induction #
Here we put together the results of the sections Zero, Limit and Successor to prove the
predicate P I o holds for all ordinals o, and conclude with the main result:
GoodProducts.linearIndependentwhich says thatGoodProducts Cis linearly independent whenCis closed.
We also define
GoodProducts.Basiswhich usesGoodProducts.linearIndependentandGoodProducts.spanto define a basis forLocallyConstant C ℤ
theorem
Profinite.NobelingProof.GoodProducts.P0
{I : Type u}
[LinearOrder I]
[WellFoundedLT I]
:
P I 0
theorem
Profinite.NobelingProof.GoodProducts.Plimit
{I : Type u}
[LinearOrder I]
[WellFoundedLT I]
(o : Ordinal.{u})
(ho : o.IsLimit)
:
theorem
Profinite.NobelingProof.GoodProducts.linearIndependentAux
{I : Type u}
[LinearOrder I]
[WellFoundedLT I]
(μ : Ordinal.{u})
:
P I μ
theorem
Profinite.NobelingProof.GoodProducts.linearIndependent
{I : Type u}
(C : Set (I → Bool))
[LinearOrder I]
[WellFoundedLT I]
(hC : IsClosed C)
:
LinearIndependent ℤ (eval C)
noncomputable def
Profinite.NobelingProof.GoodProducts.Basis
{I : Type u}
(C : Set (I → Bool))
[LinearOrder I]
[WellFoundedLT I]
(hC : IsClosed C)
:
_root_.Basis ↑(GoodProducts C) ℤ (LocallyConstant ↑C ℤ)
GoodProducts C as a ℤ-basis for LocallyConstant C ℤ.
Equations
Instances For
theorem
Profinite.NobelingProof.Nobeling_aux
{I : Type u}
[LinearOrder I]
[WellFoundedLT I]
{S : Profinite}
{ι : ↑S.toTop → I → Bool}
(hι : Topology.IsClosedEmbedding ι)
:
Module.Free ℤ (LocallyConstant ↑S.toTop ℤ)
Given a profinite set S and a closed embedding S → (I → Bool), the ℤ-module
LocallyConstant C ℤ is free.
The map Nobeling.ι is a closed embedding.
@[deprecated Profinite.Nobeling.isClosedEmbedding (since := "2024-10-26")]
Alias of Profinite.Nobeling.isClosedEmbedding.
The map Nobeling.ι is a closed embedding.
instance
LocallyConstant.freeOfProfinite
(S : Profinite)
:
Module.Free ℤ (LocallyConstant ↑S.toTop ℤ)
Nöbeling's theorem. The ℤ-module LocallyConstant S ℤ is free for every
S : Profinite.