Topology on continuous alternating maps #
In this file we define UniformSpace
and TopologicalSpace
structures
on the space of continuous alternating maps between topological vector spaces.
The structures are induced by those on ContinuousMultilinearMap
s,
and most of the lemmas follow from the corresponding lemmas about ContinuousMultilinearMap
s.
instance
ContinuousAlternatingMap.instUniformSpace
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformSpace (E [⋀^ι]→L[𝕜] F)
Equations
- ContinuousAlternatingMap.instUniformSpace = UniformSpace.comap ContinuousAlternatingMap.toContinuousMultilinearMap inferInstance
theorem
ContinuousAlternatingMap.uniformEmbedding_toContinuousMultilinearMap
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformEmbedding ContinuousAlternatingMap.toContinuousMultilinearMap
theorem
ContinuousAlternatingMap.uniformContinuous_toContinuousMultilinearMap
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformContinuous ContinuousAlternatingMap.toContinuousMultilinearMap
theorem
ContinuousAlternatingMap.uniformContinuous_coe_fun
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
[ContinuousSMul 𝕜 E]
:
UniformContinuous DFunLike.coe
theorem
ContinuousAlternatingMap.uniformContinuous_eval_const
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
[ContinuousSMul 𝕜 E]
(x : ι → E)
:
UniformContinuous fun (f : E [⋀^ι]→L[𝕜] F) => f x
instance
ContinuousAlternatingMap.instUniformAddGroup
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformAddGroup (E [⋀^ι]→L[𝕜] F)
Equations
- ⋯ = ⋯
instance
ContinuousAlternatingMap.instUniformContinuousConstSMul
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
{M : Type u_5}
[Monoid M]
[DistribMulAction M F]
[SMulCommClass 𝕜 M F]
[ContinuousConstSMul M F]
:
UniformContinuousConstSMul M (E [⋀^ι]→L[𝕜] F)
Equations
- ⋯ = ⋯
theorem
ContinuousAlternatingMap.completeSpace
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
[ContinuousSMul 𝕜 E]
[ContinuousConstSMul 𝕜 F]
[CompleteSpace F]
[T2Space F]
(h : RestrictGenTopology {s : Set (ι → E) | Bornology.IsVonNBounded 𝕜 s})
:
CompleteSpace (E [⋀^ι]→L[𝕜] F)
instance
ContinuousAlternatingMap.instCompleteSpace
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
[ContinuousSMul 𝕜 E]
[ContinuousConstSMul 𝕜 F]
[CompleteSpace F]
[T2Space F]
[TopologicalAddGroup E]
[SequentialSpace (ι → E)]
:
CompleteSpace (E [⋀^ι]→L[𝕜] F)
Equations
- ⋯ = ⋯
theorem
ContinuousAlternatingMap.uniformEmbedding_restrictScalars
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
(𝕜' : Type u_5)
[NontriviallyNormedField 𝕜']
[NormedAlgebra 𝕜' 𝕜]
[Module 𝕜' E]
[IsScalarTower 𝕜' 𝕜 E]
[Module 𝕜' F]
[IsScalarTower 𝕜' 𝕜 F]
[ContinuousSMul 𝕜 E]
:
theorem
ContinuousAlternatingMap.uniformContinuous_restrictScalars
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[UniformSpace F]
[UniformAddGroup F]
(𝕜' : Type u_5)
[NontriviallyNormedField 𝕜']
[NormedAlgebra 𝕜' 𝕜]
[Module 𝕜' E]
[IsScalarTower 𝕜' 𝕜 E]
[Module 𝕜' F]
[IsScalarTower 𝕜' 𝕜 F]
[ContinuousSMul 𝕜 E]
:
instance
ContinuousAlternatingMap.instTopologicalSpace
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
:
TopologicalSpace (E [⋀^ι]→L[𝕜] F)
Equations
- ContinuousAlternatingMap.instTopologicalSpace = TopologicalSpace.induced ContinuousAlternatingMap.toContinuousMultilinearMap inferInstance
theorem
ContinuousAlternatingMap.embedding_toContinuousMultilinearMap
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
:
Embedding ContinuousAlternatingMap.toContinuousMultilinearMap
theorem
ContinuousAlternatingMap.continuous_toContinuousMultilinearMap
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
:
Continuous ContinuousAlternatingMap.toContinuousMultilinearMap
instance
ContinuousAlternatingMap.instContinuousConstSMul
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
{M : Type u_5}
[Monoid M]
[DistribMulAction M F]
[SMulCommClass 𝕜 M F]
[ContinuousConstSMul M F]
:
ContinuousConstSMul M (E [⋀^ι]→L[𝕜] F)
Equations
- ⋯ = ⋯
instance
ContinuousAlternatingMap.instContinuousSMul
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 F]
:
ContinuousSMul 𝕜 (E [⋀^ι]→L[𝕜] F)
Equations
- ⋯ = ⋯
theorem
ContinuousAlternatingMap.hasBasis_nhds_zero_of_basis
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
{ι' : Type u_5}
{p : ι' → Prop}
{b : ι' → Set F}
(h : (nhds 0).HasBasis p b)
:
theorem
ContinuousAlternatingMap.hasBasis_nhds_zero
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
:
theorem
ContinuousAlternatingMap.continuous_eval_const
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
(x : ι → E)
:
Continuous fun (p : E [⋀^ι]→L[𝕜] F) => p x
theorem
ContinuousAlternatingMap.continuous_coe_fun
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
:
Continuous DFunLike.coe
instance
ContinuousAlternatingMap.instT2Space
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
[T2Space F]
:
Equations
- ⋯ = ⋯
instance
ContinuousAlternatingMap.instT3Space
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
[T2Space F]
:
Equations
- ⋯ = ⋯
theorem
ContinuousAlternatingMap.embedding_restrictScalars
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
{𝕜' : Type u_5}
[NontriviallyNormedField 𝕜']
[NormedAlgebra 𝕜' 𝕜]
[Module 𝕜' E]
[IsScalarTower 𝕜' 𝕜 E]
[Module 𝕜' F]
[IsScalarTower 𝕜' 𝕜 F]
:
theorem
ContinuousAlternatingMap.continuous_restrictScalars
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
{𝕜' : Type u_5}
[NontriviallyNormedField 𝕜']
[NormedAlgebra 𝕜' 𝕜]
[Module 𝕜' E]
[IsScalarTower 𝕜' 𝕜 E]
[Module 𝕜' F]
[IsScalarTower 𝕜' 𝕜 F]
:
@[simp]
theorem
ContinuousAlternatingMap.restrictScalarsCLM_apply
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
(𝕜' : Type u_5)
[NontriviallyNormedField 𝕜']
[NormedAlgebra 𝕜' 𝕜]
[Module 𝕜' E]
[IsScalarTower 𝕜' 𝕜 E]
[Module 𝕜' F]
[IsScalarTower 𝕜' 𝕜 F]
[ContinuousConstSMul 𝕜' F]
:
def
ContinuousAlternatingMap.restrictScalarsCLM
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
(𝕜' : Type u_5)
[NontriviallyNormedField 𝕜']
[NormedAlgebra 𝕜' 𝕜]
[Module 𝕜' E]
[IsScalarTower 𝕜' 𝕜 E]
[Module 𝕜' F]
[IsScalarTower 𝕜' 𝕜 F]
[ContinuousConstSMul 𝕜' F]
:
ContinuousMultilinearMap.restrictScalars
as a ContinuousLinearMap
.
Equations
- ContinuousAlternatingMap.restrictScalarsCLM 𝕜' = { toFun := ContinuousAlternatingMap.restrictScalars 𝕜', map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }
Instances For
def
ContinuousAlternatingMap.apply
(𝕜 : Type u_1)
(E : Type u_2)
(F : Type u_3)
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
[ContinuousConstSMul 𝕜 F]
(m : ι → E)
:
The application of a multilinear map as a ContinuousLinearMap
.
Equations
- ContinuousAlternatingMap.apply 𝕜 E F m = { toFun := fun (c : E [⋀^ι]→L[𝕜] F) => c m, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }
Instances For
@[simp]
theorem
ContinuousAlternatingMap.apply_apply
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
[ContinuousConstSMul 𝕜 F]
{m : ι → E}
{c : E [⋀^ι]→L[𝕜] F}
:
(ContinuousAlternatingMap.apply 𝕜 E F m) c = c m
theorem
ContinuousAlternatingMap.hasSum_eval
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
{α : Type u_5}
{p : α → E [⋀^ι]→L[𝕜] F}
{q : E [⋀^ι]→L[𝕜] F}
(h : HasSum p q)
(m : ι → E)
:
HasSum (fun (a : α) => (p a) m) (q m)
theorem
ContinuousAlternatingMap.tsum_eval
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
{ι : Type u_4}
[NormedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[TopologicalSpace E]
[AddCommGroup F]
[Module 𝕜 F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul 𝕜 E]
[T2Space F]
{α : Type u_5}
{p : α → E [⋀^ι]→L[𝕜] F}
(hp : Summable p)
(m : ι → E)
:
(∑' (a : α), p a) m = ∑' (a : α), (p a) m