Covariance in Banach spaces #
We define the covariance of a finite measure in a Banach space E,
as a continuous bilinear form on Dual ℝ E.
Main definitions #
Let μ be a finite measure on a normed space E with the Borel σ-algebra. We then define
Dual.toLp: the functionMemLp.toLpas a continuous linear map fromDual 𝕜 E(forRCLike 𝕜) into the spaceLp 𝕜 p μforp ≥ 1. This needs a hypothesisMemLp id p μ(we set it to the junk value 0 if that's not the case).covarianceBilin: covariance of a measureμwith∫ x, ‖x‖^2 ∂μ < ∞on a Banach space, as a continuous bilinear formDual ℝ E →L[ℝ] Dual ℝ E →L[ℝ] ℝ. If the second moment ofμis not finite, we setcovarianceBilin μ = 0.
Main statements #
covarianceBilin_apply: the covariance ofμonL₁, L₂ : Dual ℝ Eis equal to∫ x, (L₁ x - μ[L₁]) * (L₂ x - μ[L₂]) ∂μ.covarianceBilin_same_eq_variance:covarianceBilin μ L L = Var[L; μ].
Implementation notes #
The hypothesis that μ has a second moment is written as MemLp id 2 μ in the code.
noncomputable def
NormedSpace.Dual.toLpₗ
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{𝕜 : Type u_2}
[NontriviallyNormedField 𝕜]
[NormedSpace 𝕜 E]
(μ : MeasureTheory.Measure E)
(p : ENNReal)
:
Linear map from the dual to Lp equal to MemLp.toLp if MemLp id p μ and to 0 otherwise.
Equations
- NormedSpace.Dual.toLpₗ μ p = if h_Lp : MeasureTheory.MemLp id p μ then { toFun := fun (L : NormedSpace.Dual 𝕜 E) => MeasureTheory.MemLp.toLp ⇑L ⋯, map_add' := ⋯, map_smul' := ⋯ } else 0
Instances For
@[simp]
theorem
NormedSpace.Dual.toLpₗ_apply
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
{p : ENNReal}
{𝕜 : Type u_2}
[NontriviallyNormedField 𝕜]
[NormedSpace 𝕜 E]
(h_Lp : MeasureTheory.MemLp id p μ)
(L : Dual 𝕜 E)
:
@[simp]
theorem
NormedSpace.Dual.toLpₗ_of_not_memLp
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
{p : ENNReal}
{𝕜 : Type u_2}
[NontriviallyNormedField 𝕜]
[NormedSpace 𝕜 E]
(h_Lp : ¬MeasureTheory.MemLp id p μ)
(L : Dual 𝕜 E)
:
theorem
NormedSpace.Dual.norm_toLpₗ_le
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
{p : ENNReal}
{𝕜 : Type u_2}
[NontriviallyNormedField 𝕜]
[NormedSpace 𝕜 E]
[OpensMeasurableSpace E]
(L : Dual 𝕜 E)
:
noncomputable def
NormedSpace.Dual.toLp
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{𝕜 : Type u_2}
[RCLike 𝕜]
[NormedSpace 𝕜 E]
[OpensMeasurableSpace E]
(μ : MeasureTheory.Measure E)
(p : ENNReal)
[Fact (1 ≤ p)]
:
Continuous linear map from the dual to Lp equal to MemLp.toLp if MemLp id p μ
and to 0 otherwise.
Equations
- NormedSpace.Dual.toLp μ p = { toLinearMap := NormedSpace.Dual.toLpₗ μ p, cont := ⋯ }
Instances For
@[simp]
theorem
NormedSpace.Dual.toLp_apply
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
{p : ENNReal}
{𝕜 : Type u_2}
[RCLike 𝕜]
[NormedSpace 𝕜 E]
[OpensMeasurableSpace E]
[Fact (1 ≤ p)]
(h_Lp : MeasureTheory.MemLp id p μ)
(L : Dual 𝕜 E)
:
@[simp]
theorem
NormedSpace.Dual.toLp_of_not_memLp
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
{p : ENNReal}
{𝕜 : Type u_2}
[RCLike 𝕜]
[NormedSpace 𝕜 E]
[OpensMeasurableSpace E]
[Fact (1 ≤ p)]
(h_Lp : ¬MeasureTheory.MemLp id p μ)
(L : Dual 𝕜 E)
:
noncomputable def
ProbabilityTheory.uncenteredCovarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
[NormedSpace ℝ E]
[OpensMeasurableSpace E]
(μ : MeasureTheory.Measure E)
:
Continuous bilinear form with value ∫ x, L₁ x * L₂ x ∂μ on (L₁, L₂).
This is equal to the covariance only if μ is centered.
Equations
Instances For
theorem
ProbabilityTheory.uncenteredCovarianceBilin_apply
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
[NormedSpace ℝ E]
[OpensMeasurableSpace E]
(h : MeasureTheory.MemLp id 2 μ)
(L₁ L₂ : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.uncenteredCovarianceBilin_of_not_memLp
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
[NormedSpace ℝ E]
[OpensMeasurableSpace E]
(h : ¬MeasureTheory.MemLp id 2 μ)
(L₁ L₂ : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.norm_uncenteredCovarianceBilin_le
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
[NormedSpace ℝ E]
[OpensMeasurableSpace E]
(L₁ L₂ : NormedSpace.Dual ℝ E)
:
noncomputable def
ProbabilityTheory.covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
[NormedSpace ℝ E]
[BorelSpace E]
(μ : MeasureTheory.Measure E)
:
Continuous bilinear form with value ∫ x, (L₁ x - μ[L₁]) * (L₂ x - μ[L₂]) ∂μ on (L₁, L₂)
if MemLp id 2 μ. If not, we set it to zero.
Equations
- ProbabilityTheory.covarianceBilin μ = ProbabilityTheory.uncenteredCovarianceBilin (MeasureTheory.Measure.map (fun (x : E) => x - ∫ (x : E), x ∂μ) μ)
Instances For
@[simp]
theorem
ProbabilityTheory.covarianceBilin_of_not_memLp
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
[NormedSpace ℝ E]
[BorelSpace E]
[MeasureTheory.IsFiniteMeasure μ]
(h : ¬MeasureTheory.MemLp id 2 μ)
(L₁ L₂ : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.covarianceBilin_apply
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
[NormedSpace ℝ E]
[BorelSpace E]
[MeasureTheory.IsFiniteMeasure μ]
[CompleteSpace E]
(h : MeasureTheory.MemLp id 2 μ)
(L₁ L₂ : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.covarianceBilin_same_eq_variance
{E : Type u_1}
[NormedAddCommGroup E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
[NormedSpace ℝ E]
[BorelSpace E]
[MeasureTheory.IsFiniteMeasure μ]
[CompleteSpace E]
(h : MeasureTheory.MemLp id 2 μ)
(L : NormedSpace.Dual ℝ E)
: