Unramified and ramification index #
We connect Ideal.ramificationIdx to the commutative algebra notion predicate of IsUnramifiedAt.
Main result #
Algebra.isUnramifiedAt_iff_of_isDedekindDomain: LetRbe a domain of characteristic 0, finite rank overℤ,S ⊇ Rbe a dedekind domain that is a finiteR-algebra. Letpbe a prime ofS, thenpis unramifed iffe(p) = 1.
theorem
Ideal.ramificationIdx_eq_one_of_isUnramifiedAt
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal S}
[p.IsPrime]
[IsNoetherianRing S]
[Algebra.IsUnramifiedAt R p]
(hp : p ≠ ⊥)
[IsDomain S]
[Algebra.EssFiniteType R S]
:
theorem
IsUnramifiedAt.of_liesOver_of_ne_bot
(R : Type u_1)
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra S T]
[Algebra R T]
[IsScalarTower R S T]
(p : Ideal S)
(P : Ideal T)
[P.LiesOver p]
[p.IsPrime]
[P.IsPrime]
[Algebra.IsUnramifiedAt R P]
[Algebra.EssFiniteType R S]
[Algebra.EssFiniteType R T]
[IsDedekindDomain S]
(hP₁ : P.primeCompl ≤ nonZeroDivisors T)
(hP₂ : p ≠ ⊥ → P ≠ ⊥)
:
theorem
Algebra.IsUnramifiedAt.of_liesOver
(R : Type u_1)
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra S T]
[Algebra R T]
[IsScalarTower R S T]
(p : Ideal S)
(P : Ideal T)
[P.LiesOver p]
[p.IsPrime]
[P.IsPrime]
[IsUnramifiedAt R P]
[EssFiniteType R S]
[EssFiniteType R T]
[IsDedekindDomain S]
[IsDomain T]
[NoZeroSMulDivisors S T]
:
IsUnramifiedAt R p
Up to technical conditions, If T/S/R is a tower of algebras, P is a prime of T unramified
in R, then P ∩ S (as a prime of S) is also unramified in R.
theorem
Algebra.isUnramifiedAt_iff_of_isDedekindDomain
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal S}
[p.IsPrime]
[IsDedekindDomain S]
[EssFiniteType R S]
[IsDomain R]
[Module.Finite ℤ R]
[CharZero R]
[Algebra.IsIntegral R S]
(hp : p ≠ ⊥)
:
Let R be a domain of characteristic 0, finite rank over ℤ, S be a dedekind domain
that is a finite R-algebra. Let p be a prime of S, then p is unramifed iff e(p) = 1.