Essentially of finite type algebras #
Main results #
Algebra.EssFiniteType
: The class of essentially of finite type algebras. AnR
-algebra is essentially of finite type if it is the localization of an algebra of finite type.Algebra.EssFiniteType.algHom_ext
: The algebra homomorphisms out from an algebra essentially of finite type is determined by its values on a finite set.
An R
-algebra is essentially of finite type if
it is the localization of an algebra of finite type.
See essFiniteType_iff_exists_subalgebra
.
- cond : ∃ (s : Finset S), IsLocalization (Submonoid.comap (algebraMap { x : S // x ∈ Algebra.adjoin R ↑s } S) (IsUnit.submonoid S)) S
Instances
theorem
Algebra.EssFiniteType.cond
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[self : Algebra.EssFiniteType R S]
:
∃ (s : Finset S),
IsLocalization (Submonoid.comap (algebraMap { x : S // x ∈ Algebra.adjoin R ↑s } S) (IsUnit.submonoid S)) S
noncomputable def
Algebra.EssFiniteType.finset
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[h : Algebra.EssFiniteType R S]
:
Finset S
Let S
be an R
-algebra essentially of finite type, this is a choice of a finset s ⊆ S
such that S
is the localization of R[s]
.
Equations
- Algebra.EssFiniteType.finset R S = ⋯.choose
Instances For
@[reducible, inline]
noncomputable abbrev
Algebra.EssFiniteType.subalgebra
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.EssFiniteType R S]
:
Subalgebra R S
A choice of a subalgebra of finite type in an essentially of finite type algebra, such that its localization is the whole ring.
Equations
Instances For
theorem
Algebra.EssFiniteType.adjoin_mem_finset
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.EssFiniteType R S]
:
Algebra.adjoin R {x : { x : S // x ∈ Algebra.EssFiniteType.subalgebra R S } | ↑x ∈ Algebra.EssFiniteType.finset R S} = ⊤
instance
Algebra.instFiniteTypeSubtypeMemSubalgebraSubalgebra
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.EssFiniteType R S]
:
Algebra.FiniteType R { x : S // x ∈ Algebra.EssFiniteType.subalgebra R S }
Equations
- ⋯ = ⋯
noncomputable def
Algebra.EssFiniteType.submonoid
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.EssFiniteType R S]
:
Submonoid { x : S // x ∈ Algebra.EssFiniteType.subalgebra R S }
A submonoid of EssFiniteType.subalgebra R S
, whose localization is the whole algebra S
.
Equations
- Algebra.EssFiniteType.submonoid R S = Submonoid.comap (algebraMap { x : S // x ∈ Algebra.EssFiniteType.subalgebra R S } S) (IsUnit.submonoid S)
Instances For
instance
Algebra.EssFiniteType.isLocalization
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[h : Algebra.EssFiniteType R S]
:
Equations
- ⋯ = ⋯
theorem
Algebra.essFiniteType_cond_iff
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
(σ : Finset S)
:
IsLocalization (Submonoid.comap (algebraMap { x : S // x ∈ Algebra.adjoin R ↑σ } S) (IsUnit.submonoid S)) S ↔ ∀ (s : S), ∃ t ∈ Algebra.adjoin R ↑σ, IsUnit t ∧ s * t ∈ Algebra.adjoin R ↑σ
theorem
Algebra.essFiniteType_iff
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
:
Algebra.EssFiniteType R S ↔ ∃ (σ : Finset S), ∀ (s : S), ∃ t ∈ Algebra.adjoin R ↑σ, IsUnit t ∧ s * t ∈ Algebra.adjoin R ↑σ
instance
Algebra.EssFiniteType.of_finiteType
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.FiniteType R S]
:
Equations
- ⋯ = ⋯
theorem
Algebra.EssFiniteType.of_isLocalization
{R : Type u_1}
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
(M : Submonoid R)
[IsLocalization M S]
:
theorem
Algebra.EssFiniteType.aux
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(σ : Subalgebra R S)
(hσ : ∀ (s : S), ∃ t ∈ σ, IsUnit t ∧ s * t ∈ σ)
(τ : Set T)
(t : T)
(ht : t ∈ Algebra.adjoin S τ)
:
∃ s ∈ σ, IsUnit s ∧ s • t ∈ Subalgebra.map (IsScalarTower.toAlgHom R S T) σ ⊔ Algebra.adjoin R τ
theorem
Algebra.EssFiniteType.comp
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[h₁ : Algebra.EssFiniteType R S]
[h₂ : Algebra.EssFiniteType S T]
:
theorem
Algebra.essFiniteType_iff_exists_subalgebra
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
:
Algebra.EssFiniteType R S ↔ ∃ (S₀ : Subalgebra R S) (M : Submonoid { x : S // x ∈ S₀ }),
Algebra.FiniteType R { x : S // x ∈ S₀ } ∧ IsLocalization M S
instance
Algebra.EssFiniteType.baseChange
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[h : Algebra.EssFiniteType R S]
:
Algebra.EssFiniteType T (TensorProduct R T S)
Equations
- ⋯ = ⋯
theorem
Algebra.EssFiniteType.of_comp
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[h : Algebra.EssFiniteType R T]
:
theorem
Algebra.EssFiniteType.comp_iff
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[Algebra.EssFiniteType R S]
: