Cardinal of quotient of free finite ℤ-modules by submodules of full rank #
Main results #
Submodule.natAbs_det_basis_change: letbbe aℤ-basis for a moduleMoverℤand letbNbe a basis for a submoduleNof the same dimension. Then the cardinal ofM ⧸ Nis given by taking the determinant ofbNoverb.
theorem
Submodule.natAbs_det_equiv
{M : Type u_1}
[AddCommGroup M]
[Module.Free ℤ M]
[Module.Finite ℤ M]
(N : Submodule ℤ M)
{E : Type u_2}
[EquivLike E M ↥N]
[AddEquivClass E M ↥N]
(e : E)
:
Let e : M ≃ N be an additive isomorphism (therefore a ℤ-linear equiv).
Then an alternative way to compute the cardinality of the quotient M ⧸ N is given by taking
the determinant of e.
See natAbs_det_basis_change for a more familiar formulation of this result.
theorem
Submodule.natAbs_det_basis_change
{M : Type u_1}
[AddCommGroup M]
[Module.Free ℤ M]
[Module.Finite ℤ M]
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
(b : Basis ι ℤ M)
(N : Submodule ℤ M)
(bN : Basis ι ℤ ↥N)
:
Let b be a basis for M over ℤ and bN a basis for N over ℤ of the same dimension.
Then an alternative way to compute the cardinality of M ⧸ N is given by taking the determinant
of bN over b.
theorem
AddSubgroup.index_eq_natAbs_det
{E : Type u_1}
[AddCommGroup E]
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
(bE : Basis ι ℤ E)
(N : AddSubgroup E)
(bN : Basis ι ℤ ↥N)
:
theorem
AddSubgroup.relindex_eq_natAbs_det
{E : Type u_1}
[AddCommGroup E]
(L₁ L₂ : AddSubgroup E)
(H : L₁ ≤ L₂)
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
(b₁ : Basis ι ℤ ↥(toIntSubmodule L₁))
(b₂ : Basis ι ℤ ↥(toIntSubmodule L₂))
: