algNormOfAlgEquiv and invariantExtension #
Let K be a nonarchimedean normed field and L/K be a finite algebraic extension. In the comments,
‖ ⬝ ‖ denotes any power-multiplicative K-algebra norm on L extending the norm on K.
Main Definitions #
IsUltrametricDist.algNormOfAlgEquiv: givenσ : L ≃ₐ[K] L, the functionL → ℝsendingx : Lto‖ σ x ‖is aK-algebra norm onL.IsUltrametricDist.invariantExtension: the functionL → ℝsendingx : Lto the maximum of‖ σ x ‖over allσ : L ≃ₐ[K] Lis aK-algebra norm onL.
Main Results #
IsUltrametricDist.isPowMul_algNormOfAlgEquiv:algNormOfAlgEquivis power-multiplicative.IsUltrametricDist.isNonarchimedean_algNormOfAlgEquiv:algNormOfAlgEquivis nonarchimedean.IsUltrametricDist.algNormOfAlgEquiv_extends:algNormOfAlgEquivextends the norm onK.IsUltrametricDist.isPowMul_invariantExtension:invariantExtensionis power-multiplicative.IsUltrametricDist.isNonarchimedean_invariantExtension:invariantExtensionis nonarchimedean.IsUltrametricDist.invariantExtension_extends:invariantExtensionextends the norm onK.
References #
- [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis][bosch-guntzer-remmert]
Tags #
algNormOfAlgEquiv, invariantExtension, norm, nonarchimedean
Given a normed field K, a finite algebraic extension L/K and σ : L ≃ₐ[K] L, the function
L → ℝ sending x : L to ‖ σ x ‖, where ‖ ⬝ ‖ is any power-multiplicative algebra norm on L
extending the norm on K, is an algebra norm on K.
Equations
- IsUltrametricDist.algNormOfAlgEquiv σ = { toFun := fun (x : L) => (Classical.choose ⋯) (σ x), map_zero' := ⋯, add_le' := ⋯, neg' := ⋯, mul_le' := ⋯, eq_zero_of_map_eq_zero' := ⋯, smul' := ⋯ }
Instances For
The algebra norm algNormOfAlgEquiv is power-multiplicative.
The algebra norm algNormOfAlgEquiv is nonarchimedean.
The algebra norm algNormOfAlgEquiv extends the norm on K.
The function L → ℝ sending x : L to the maximum of algNormOfAlgEquiv hna σ over
all σ : L ≃ₐ[K] L is an algebra norm on L.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The algebra norm invariantExtension is power-multiplicative.
The algebra norm invariantExtension is nonarchimedean.
The algebra norm invariantExtension extends the norm on K.