Covolume of ℤ-lattices #
Let E be a finite dimensional real vector space.
Let L be a ℤ-lattice L defined as a discrete ℤ-submodule of E that spans E over ℝ.
Main definitions and results #
ZLattice.covolume: the covolume ofLdefined as the volume of an arbitrary fundamental domain ofL.ZLattice.covolume_eq_measure_fundamentalDomain: the covolume ofLdoes not depend on the choice of the fundamental domain ofL.ZLattice.covolume_eq_det: ifLis a lattice inℝ^n, then its covolume is the absolute value of the determinant of anyℤ-basis ofL.ZLattice.covolume.tendsto_card_div_pow: Letsbe a bounded measurable set ofι → ℝ, then the number of points ins ∩ n⁻¹ • Ldivided byn ^ card ιtends tovolume s / covolume Lwhenn : ℕtends to infinity. See alsoZLattice.covolume.tendsto_card_div_pow'for a version forInnerProductSpace ℝ EandZLattice.covolume.tendsto_card_div_pow''for the general version.ZLattice.covolume.tendsto_card_le_div: LetXbe a cone inι → ℝand letF : (ι → ℝ) → ℝbe a function such thatF (c • x) = c ^ card ι * F x. Then the number of pointsx ∈ Xsuch thatF x ≤ cdivided byctends tovolume {x ∈ X | F x ≤ 1} / covolume Lwhenc : ℝtends to infinity. See alsoZLattice.covolume.tendsto_card_le_div'for a version forInnerProductSpace ℝ EandZLattice.covolume.tendsto_card_le_div''for the general version.
Naming convention #
Some results are true in the case where the ambient finite dimensional real vector space is the
pi-space ι → ℝ and in the case where it is an InnerProductSpace. We use the following
convention: the plain name is for the pi case, for eg. volume_image_eq_volume_div_covolume. For
the same result in the InnerProductSpace case, we add a prime, for eg.
volume_image_eq_volume_div_covolume'. When the same result exists in the
general case, we had two primes, eg. covolume.tendsto_card_div_pow''.
The covolume of a ℤ-lattice is the volume of some fundamental domain; see
ZLattice.covolume_eq_volume for the proof that the volume does not depend on the choice of
the fundamental domain.
Equations
- ZLattice.covolume L μ = (MeasureTheory.addCovolume (↥L) E μ).toReal
Instances For
Alias of ZLattice.covolume_eq_det_mul_measureReal.
A more general version of ZLattice.volume_image_eq_volume_div_covolume;
see the Naming conventions section in the introduction.
A version of ZLattice.covolume.tendsto_card_div_pow for the general case;
see the Naming convention section in the introduction.
A version of ZLattice.covolume.tendsto_card_le_div for the general case;
see the Naming conventions section in the introduction.
A version of ZLattice.covolume.tendsto_card_div_pow for the InnerProductSpace case;
see the Naming convention section in the introduction.
A version of ZLattice.covolume.tendsto_card_le_div for the InnerProductSpace case;
see the Naming convention section in the introduction.