Lemmas about tensor products of central algebras #
In this file we prove for algebras B and C over a field K that if B ⊗[K] C is a central
algebra and B, C nontrivial, then both B and C are central algebras.
Main Results #
Algebra.IsCentral.left_of_tensor_of_field: IfBCareK-algebras whereKis a field,Cis nontrivial andB ⊗[K] Cis a central algebra overK, thenBis a central algebra overK.Algebra.IsCentral.right_of_tensor_of_field: IfBCareK-algebras whereKis a field,Cis nontrivial andB ⊗[K] Cis a central algebra overK, thenBis a central algebra overK.
Tags #
Central Algebras, Central Simple Algebras, Noncommutative Algebra
theorem
Algebra.TensorProduct.includeLeft_map_center_le
(K : Type u_1)
(B : Type u_2)
(C : Type u_3)
[CommSemiring K]
[Semiring B]
[Semiring C]
[Algebra K B]
[Algebra K C]
:
theorem
Algebra.TensorProduct.includeRight_map_center_le
(K : Type u_1)
(B : Type u_2)
(C : Type u_3)
[CommSemiring K]
[Semiring B]
[Semiring C]
[Algebra K B]
[Algebra K C]
:
theorem
Algebra.IsCentral.left_of_tensor
(K : Type u_1)
(B : Type u_2)
(C : Type u_3)
[CommSemiring K]
[Semiring B]
[Semiring C]
[Algebra K B]
[Algebra K C]
(inj : Function.Injective ⇑(algebraMap K C))
[Module.Flat K B]
[hbc : IsCentral K (TensorProduct K B C)]
:
IsCentral K B
theorem
Algebra.IsCentral.right_of_tensor
(K : Type u_1)
(B : Type u_2)
(C : Type u_3)
[CommSemiring K]
[Semiring B]
[Semiring C]
[Algebra K B]
[Algebra K C]
(inj : Function.Injective ⇑(algebraMap K B))
[Module.Flat K C]
[IsCentral K (TensorProduct K B C)]
:
IsCentral K C
theorem
Algebra.IsCentral.left_of_tensor_of_field
(K : Type u_4)
(B : Type u_5)
(C : Type u_6)
[Field K]
[Ring B]
[Ring C]
[Nontrivial C]
[Algebra K B]
[Algebra K C]
[IsCentral K (TensorProduct K B C)]
:
IsCentral K B
Let B and C be two algebras over a field K, if B ⊗[K] C is central and C is
non-trivial, then B is central.
theorem
Algebra.IsCentral.right_of_tensor_of_field
(K : Type u_4)
(B : Type u_5)
(C : Type u_6)
[Field K]
[Ring B]
[Ring C]
[Nontrivial B]
[Algebra K B]
[Algebra K C]
[IsCentral K (TensorProduct K B C)]
:
IsCentral K C
Let B and C be two algebras over a field K, if B ⊗[K] C is central and A is
non-trivial, then B is central.