Central Algebras #
In this file, we prove some basic results about central algebras over a commutative ring.
Main results #
Algebra.IsCentral.center_eq_bot: the center of a central algebra overKis equal toK.Algebra.IsCentral.self: a commutative ring is a central algebra over itself.Algebra.IsCentral.baseField_essentially_unique: LetD/K/kis a tower of scalars whereKandkare fields. IfDis a nontrivial central algebra overk,Kis isomorphic tok.
@[simp]
theorem
Algebra.IsCentral.center_eq_bot
(K : Type u)
[CommSemiring K]
(D : Type v)
[Semiring D]
[Algebra K D]
[h : IsCentral K D]
:
theorem
Algebra.IsCentral.mem_center_iff
(K : Type u)
[CommSemiring K]
{D : Type v}
[Semiring D]
[Algebra K D]
[h : IsCentral K D]
{x : D}
:
theorem
Algebra.IsCentral.baseField_essentially_unique
(k : Type u_1)
(K : Type u_2)
(D : Type u_3)
[Field k]
[Field K]
[Ring D]
[Nontrivial D]
[Algebra k K]
[Algebra K D]
[Algebra k D]
[IsScalarTower k K D]
[IsCentral k D]
:
Function.Bijective ⇑(algebraMap k K)
instance
Algebra.IsCentral.instMulOpposite
(K : Type u)
[CommSemiring K]
(D : Type v)
[Semiring D]
[Algebra K D]
[h : IsCentral K D]
:
Opposite algebra of a central algebra is central. This instance combined with the coming
IsSimpleRing instance for the opposite of central simple algebra will be an
inverse for an element in BrauerGroup, find out more about this in
Mathlib/Algebra/BrauerGroup/Basic.lean.