Pairwise R as
means that all the elements of the array as
are R
-related to all elements with
larger indices.
Pairwise R #[1, 2, 3] ↔ R 1 2 ∧ R 1 3 ∧ R 2 3
For example as.Pairwise (· ≠ ·)
asserts that as
has no duplicates, as.Pairwise (· < ·)
asserts
that as
is strictly sorted and as.Pairwise (· ≤ ·)
asserts that as
is weakly sorted.
Equations
- Array.Pairwise R as = List.Pairwise R as.data
Instances For
theorem
Array.pairwise_iff_get
{α : Type u_1}
{R : α → α → Prop}
{as : Array α}
:
Array.Pairwise R as ↔ ∀ (i j : Fin as.size), i < j → R (as.get i) (as.get j)
instance
Array.instDecidablePairwiseOfDecidableRel
{α : Type u_1}
(R : α → α → Prop)
[DecidableRel R]
(as : Array α)
:
Decidable (Array.Pairwise R as)
Equations
- Array.instDecidablePairwiseOfDecidableRel R as = decidable_of_iff (∀ (j : Fin as.size) (i : Fin ↑j), R as[↑i] as[↑j]) ⋯
theorem
Array.pairwise_pair :
∀ {α : Type u_1} {a b : α} {R : α → α → Prop}, Array.Pairwise R #[a, b] ↔ R a b
theorem
Array.pairwise_append
{α : Type u_1}
{R : α → α → Prop}
{as : Array α}
{bs : Array α}
:
Array.Pairwise R (as ++ bs) ↔ Array.Pairwise R as ∧ Array.Pairwise R bs ∧ ∀ (x : α), x ∈ as → ∀ (y : α), y ∈ bs → R x y
theorem
Array.pairwise_push
{α : Type u_1}
{a : α}
{R : α → α → Prop}
{as : Array α}
:
Array.Pairwise R (as.push a) ↔ Array.Pairwise R as ∧ ∀ (x : α), x ∈ as → R x a
theorem
Array.pairwise_extract
{α : Type u_1}
{R : α → α → Prop}
{as : Array α}
(h : Array.Pairwise R as)
(start : Nat)
(stop : Nat)
:
Array.Pairwise R (as.extract start stop)