zipWith / zip #
theorem
Array.data_zipWith
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
(f : α → β → γ)
(as : Array α)
(bs : Array β)
:
(as.zipWith bs f).data = List.zipWith f as.data bs.data
@[irreducible]
@[deprecated Array.data_zipWith]
theorem
Array.zipWith_eq_zipWith_data
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
(f : α → β → γ)
(as : Array α)
(bs : Array β)
:
(as.zipWith bs f).data = List.zipWith f as.data bs.data
Alias of Array.data_zipWith
.
@[deprecated Array.data_zip]
theorem
Array.zip_eq_zip_data
{α : Type u_1}
{β : Type u_2}
(as : Array α)
(bs : Array β)
:
(as.zip bs).data = as.data.zip bs.data
Alias of Array.data_zip
.
filter #
theorem
Array.size_filter_le
{α : Type u_1}
(p : α → Bool)
(l : Array α)
:
(Array.filter p l).size ≤ l.size
join #
@[deprecated Array.data_join]
Alias of Array.data_join
.
erase #
shrink #
theorem
Array.size_shrink_loop
{α : Type u_1}
(a : Array α)
(n : Nat)
:
(Array.shrink.loop n a).size = a.size - n
set #
map #
theorem
Array.mapM_empty
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
[Monad m]
(f : α → m β)
:
Array.mapM f #[] = pure #[]
mem #
append #
Alias of Array.append_nil
.
Alias of Array.nil_append
.