Documentation

Mathlib.Topology.Sheaves.MayerVietoris

Mayer-Vietoris squares #

Given two open subsets U and V of a topological space T, we construct the associated Mayer-Vietoris square:

U ⊓ V --->   U
  |          |
  v          v
  V   ---> U ⊔ V
@[simp]
theorem Opens.mayerVietorisSquare'_toSquare {T : Type u} [TopologicalSpace T] (sq : CategoryTheory.Square (TopologicalSpace.Opens T)) (h₄ : sq.X₄ = sq.X₂ sq.X₃) (h₁ : sq.X₁ = sq.X₂ sq.X₃) :
(Opens.mayerVietorisSquare' sq h₄ h₁).toSquare = sq
noncomputable def Opens.mayerVietorisSquare' {T : Type u} [TopologicalSpace T] (sq : CategoryTheory.Square (TopologicalSpace.Opens T)) (h₄ : sq.X₄ = sq.X₂ sq.X₃) (h₁ : sq.X₁ = sq.X₂ sq.X₃) :
(Opens.grothendieckTopology T).MayerVietorisSquare

A square consisting of opens X₂ ⊓ X₃, X₂, X₃ and X₂ ⊔ X₃ is a Mayer-Vietoris square.

Equations
Instances For

    The Mayer-Vietoris square attached to two open subsets of a topological space.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For