Documentation

Mathlib.Topology.Instances.TrivSqZeroExt

Topology on TrivSqZeroExt R M #

The type TrivSqZeroExt R M inherits the topology from R × M.

Note that this is not the topology induced by the seminorm on the dual numbers suggested by this Math.SE answer, which instead induces the topology pulled back through the projection map TrivSqZeroExt.fst : tsze R M → R. Obviously, that topology is not Hausdorff and using it would result in exp converging to more than one value.

Main results #

Equations
Equations
  • =
theorem TrivSqZeroExt.nhds_def {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] (x : TrivSqZeroExt R M) :
nhds x = (nhds x.fst).prod (nhds x.snd)
theorem TrivSqZeroExt.nhds_inl {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] (x : R) :
nhds (TrivSqZeroExt.inl x) = (nhds x).prod (nhds 0)
theorem TrivSqZeroExt.nhds_inr {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] (m : M) :
nhds (TrivSqZeroExt.inr m) = (nhds 0).prod (nhds m)
theorem TrivSqZeroExt.continuous_fst {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] :
Continuous TrivSqZeroExt.fst
theorem TrivSqZeroExt.continuous_snd {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] :
Continuous TrivSqZeroExt.snd
theorem TrivSqZeroExt.continuous_inl {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] :
Continuous TrivSqZeroExt.inl
theorem TrivSqZeroExt.continuous_inr {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] :
Continuous TrivSqZeroExt.inr
theorem TrivSqZeroExt.embedding_inl {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] :
Embedding TrivSqZeroExt.inl
theorem TrivSqZeroExt.embedding_inr {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] :
Embedding TrivSqZeroExt.inr
@[simp]
@[simp]

TrivSqZeroExt.fst as a continuous linear map.

Equations
  • TrivSqZeroExt.fstCLM R M = { toFun := TrivSqZeroExt.fst, map_add' := , map_smul' := , cont := }
Instances For
    @[simp]
    @[simp]

    TrivSqZeroExt.snd as a continuous linear map.

    Equations
    • TrivSqZeroExt.sndCLM R M = { toFun := TrivSqZeroExt.snd, map_add' := , map_smul' := , cont := }
    Instances For

      TrivSqZeroExt.inl as a continuous linear map.

      Equations
      • TrivSqZeroExt.inlCLM R M = { toFun := TrivSqZeroExt.inl, map_add' := , map_smul' := , cont := }
      Instances For

        TrivSqZeroExt.inr as a continuous linear map.

        Equations
        • TrivSqZeroExt.inrCLM R M = { toFun := TrivSqZeroExt.inr, map_add' := , map_smul' := , cont := }
        Instances For

          This is not an instance due to complaints by the fails_quickly linter. At any rate, we only really care about the TopologicalRing instance below.

          Equations
          • =
          theorem TrivSqZeroExt.hasSum_inl {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αR} {a : R} (h : HasSum f a) :
          HasSum (fun (x : α) => TrivSqZeroExt.inl (f x)) (TrivSqZeroExt.inl a)
          theorem TrivSqZeroExt.hasSum_inr {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αM} {a : M} (h : HasSum f a) :
          HasSum (fun (x : α) => TrivSqZeroExt.inr (f x)) (TrivSqZeroExt.inr a)
          theorem TrivSqZeroExt.hasSum_fst {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αTrivSqZeroExt R M} {a : TrivSqZeroExt R M} (h : HasSum f a) :
          HasSum (fun (x : α) => (f x).fst) a.fst
          theorem TrivSqZeroExt.hasSum_snd {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αTrivSqZeroExt R M} {a : TrivSqZeroExt R M} (h : HasSum f a) :
          HasSum (fun (x : α) => (f x).snd) a.snd
          Equations
          • TrivSqZeroExt.instUniformSpace = UniformSpace.mk UniformSpace.uniformity
          theorem TrivSqZeroExt.uniformity_def {R : Type u_3} {M : Type u_4} [UniformSpace R] [UniformSpace M] :
          uniformity (TrivSqZeroExt R M) = Filter.comap (fun (p : TrivSqZeroExt R M × TrivSqZeroExt R M) => (p.1.fst, p.2.fst)) (uniformity R) Filter.comap (fun (p : TrivSqZeroExt R M × TrivSqZeroExt R M) => (p.1.snd, p.2.snd)) (uniformity M)
          theorem TrivSqZeroExt.uniformContinuous_fst {R : Type u_3} {M : Type u_4} [UniformSpace R] [UniformSpace M] :
          UniformContinuous TrivSqZeroExt.fst
          theorem TrivSqZeroExt.uniformContinuous_snd {R : Type u_3} {M : Type u_4} [UniformSpace R] [UniformSpace M] :
          UniformContinuous TrivSqZeroExt.snd
          theorem TrivSqZeroExt.uniformContinuous_inl {R : Type u_3} {M : Type u_4} [UniformSpace R] [UniformSpace M] [Zero M] :
          UniformContinuous TrivSqZeroExt.inl
          theorem TrivSqZeroExt.uniformContinuous_inr {R : Type u_3} {M : Type u_4} [UniformSpace R] [UniformSpace M] [Zero R] :
          UniformContinuous TrivSqZeroExt.inr