Covering Maps #
This file defines covering maps.
Main definitions #
IsEvenlyCovered f x I
: A pointx
is evenly covered byf : E → X
with fiberI
ifI
is discrete and there is aTrivialization
off
atx
with fiberI
.IsCoveringMap f
: A functionf : E → X
is a covering map if every pointx
is evenly covered byf
with fiberf ⁻¹' {x}
. The fibersf ⁻¹' {x}
must be discrete, but ifX
is not connected, then the fibersf ⁻¹' {x}
are not necessarily isomorphic. Also,f
is not assumed to be surjective, so the fibers are even allowed to be empty.
def
IsEvenlyCovered
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(x : X)
(I : Type u_3)
[TopologicalSpace I]
:
A point x : X
is evenly covered by f : E → X
if x
has an evenly covered neighborhood.
Equations
- IsEvenlyCovered f x I = (DiscreteTopology I ∧ ∃ (t : Trivialization I f), x ∈ t.baseSet)
Instances For
noncomputable def
IsEvenlyCovered.toTrivialization
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : X}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f x I)
:
Trivialization (↑(f ⁻¹' {x})) f
If x
is evenly covered by f
, then we can construct a trivialization of f
at x
.
Equations
- h.toTrivialization = (Classical.choose ⋯).transFiberHomeomorph ((Classical.choose ⋯).preimageSingletonHomeomorph ⋯).symm
Instances For
theorem
IsEvenlyCovered.mem_toTrivialization_baseSet
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : X}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f x I)
:
x ∈ h.toTrivialization.baseSet
theorem
IsEvenlyCovered.toTrivialization_apply
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : E}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f (f x) I)
:
(↑h.toTrivialization x).2 = ⟨x, ⋯⟩
theorem
IsEvenlyCovered.continuousAt
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : E}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f (f x) I)
:
ContinuousAt f x
theorem
IsEvenlyCovered.to_isEvenlyCovered_preimage
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : X}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f x I)
:
IsEvenlyCovered f x ↑(f ⁻¹' {x})
def
IsCoveringMapOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(s : Set X)
:
A covering map is a continuous function f : E → X
with discrete fibers such that each point
of X
has an evenly covered neighborhood.
Equations
- IsCoveringMapOn f s = ∀ x ∈ s, IsEvenlyCovered f x ↑(f ⁻¹' {x})
Instances For
theorem
IsCoveringMapOn.mk
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(s : Set X)
(F : X → Type u_3)
[(x : X) → TopologicalSpace (F x)]
[hF : ∀ (x : X), DiscreteTopology (F x)]
(e : (x : X) → x ∈ s → Trivialization (F x) f)
(h : ∀ (x : X) (hx : x ∈ s), x ∈ (e x hx).baseSet)
:
IsCoveringMapOn f s
theorem
IsCoveringMapOn.continuousAt
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{s : Set X}
(hf : IsCoveringMapOn f s)
{x : E}
(hx : f x ∈ s)
:
ContinuousAt f x
theorem
IsCoveringMapOn.continuousOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{s : Set X}
(hf : IsCoveringMapOn f s)
:
ContinuousOn f (f ⁻¹' s)
theorem
IsCoveringMapOn.isLocalHomeomorphOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{s : Set X}
(hf : IsCoveringMapOn f s)
:
IsLocalHomeomorphOn f (f ⁻¹' s)
def
IsCoveringMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
:
A covering map is a continuous function f : E → X
with discrete fibers such that each point
of X
has an evenly covered neighborhood.
Equations
- IsCoveringMap f = ∀ (x : X), IsEvenlyCovered f x ↑(f ⁻¹' {x})
Instances For
theorem
isCoveringMap_iff_isCoveringMapOn_univ
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
:
IsCoveringMap f ↔ IsCoveringMapOn f Set.univ
theorem
IsCoveringMap.isCoveringMapOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
IsCoveringMapOn f Set.univ
theorem
IsCoveringMap.mk
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(F : X → Type u_3)
[(x : X) → TopologicalSpace (F x)]
[∀ (x : X), DiscreteTopology (F x)]
(e : (x : X) → Trivialization (F x) f)
(h : ∀ (x : X), x ∈ (e x).baseSet)
:
theorem
IsCoveringMap.continuous
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.isLocalHomeomorph
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.isOpenMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.quotientMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
(hf' : Function.Surjective f)
:
theorem
IsCoveringMap.isSeparatedMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.eq_of_comp_eq
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
{A : Type u_3}
[TopologicalSpace A]
{g₁ : A → E}
{g₂ : A → E}
[PreconnectedSpace A]
(h₁ : Continuous g₁)
(h₂ : Continuous g₂)
(he : f ∘ g₁ = f ∘ g₂)
(a : A)
(ha : g₁ a = g₂ a)
:
g₁ = g₂
theorem
IsCoveringMap.const_of_comp
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
{A : Type u_3}
[TopologicalSpace A]
{g : A → E}
[PreconnectedSpace A]
(cont : Continuous g)
(he : ∀ (a a' : A), f (g a) = f (g a'))
(a : A)
(a' : A)
:
g a = g a'
theorem
IsCoveringMap.eqOn_of_comp_eqOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
{A : Type u_3}
[TopologicalSpace A]
{s : Set A}
{g₁ : A → E}
{g₂ : A → E}
(hs : IsPreconnected s)
(h₁ : ContinuousOn g₁ s)
(h₂ : ContinuousOn g₂ s)
(he : Set.EqOn (f ∘ g₁) (f ∘ g₂) s)
{a : A}
(has : a ∈ s)
(ha : g₁ a = g₂ a)
:
Set.EqOn g₁ g₂ s
theorem
IsCoveringMap.constOn_of_comp
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
{A : Type u_3}
[TopologicalSpace A]
{s : Set A}
{g : A → E}
(hs : IsPreconnected s)
(cont : ContinuousOn g s)
(he : ∀ a ∈ s, ∀ a' ∈ s, f (g a) = f (g a'))
{a : A}
{a' : A}
(ha : a ∈ s)
(ha' : a' ∈ s)
:
g a = g a'
theorem
IsFiberBundle.isCoveringMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{F : Type u_3}
[TopologicalSpace F]
[DiscreteTopology F]
(hf : ∀ (x : X), ∃ (e : Trivialization F f), x ∈ e.baseSet)
:
theorem
FiberBundle.isCoveringMap
{X : Type u_2}
[TopologicalSpace X]
{F : Type u_3}
{E : X → Type u_4}
[TopologicalSpace F]
[DiscreteTopology F]
[TopologicalSpace (Bundle.TotalSpace F E)]
[(x : X) → TopologicalSpace (E x)]
[FiberBundle F E]
:
IsCoveringMap Bundle.TotalSpace.proj