Compact subsets of products as limits in Profinite #
This file exhibits a compact subset C of a product (i : ι) → X i of totally disconnected
Hausdorff spaces as a cofiltered limit in Profinite indexed by Finset ι.
Main definitions #
Profinite.indexFunctoris the functor(Finset ι)ᵒᵖ ⥤ Profiniteindexing the limit. It mapsJto the restriction ofCtoJProfinite.indexConeis a cone onProfinite.indexFunctorwith cone pointC
Main results #
Profinite.isIso_indexCone_liftsays that the natural map from the cone point of the explicit limit cone inProfiniteonindexFunctorto the cone point ofindexConeis an isomorphismProfinite.asLimitindexConeIsois the induced isomorphism of cones.Profinite.indexCone_isLimitsays thatindexConeis a limit cone.
def
Profinite.IndexFunctor.obj
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
(C : Set ((i : ι) → X i))
(J : ι → Prop)
:
The object part of the functor indexFunctor : (Finset ι)ᵒᵖ ⥤ Profinite.
Equations
Instances For
def
Profinite.IndexFunctor.π_app
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
(C : Set ((i : ι) → X i))
(J : ι → Prop)
:
The projection maps in the limit cone indexCone.
Equations
- Profinite.IndexFunctor.π_app C J = { toFun := Set.MapsTo.restrict (⇑(ContinuousMap.precomp Subtype.val)) C (Profinite.IndexFunctor.obj C J) ⋯, continuous_toFun := ⋯ }
Instances For
def
Profinite.IndexFunctor.map
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
(C : Set ((i : ι) → X i))
{J K : ι → Prop}
(h : ∀ (i : ι), J i → K i)
:
The morphism part of the functor indexFunctor : (Finset ι)ᵒᵖ ⥤ Profinite.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Profinite.IndexFunctor.surjective_π_app
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
(C : Set ((i : ι) → X i))
{J : ι → Prop}
:
Function.Surjective ⇑(π_app C J)
noncomputable def
Profinite.indexFunctor
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
{C : Set ((i : ι) → X i)}
[∀ (i : ι), T2Space (X i)]
[∀ (i : ι), TotallyDisconnectedSpace (X i)]
(hC : IsCompact C)
:
The functor from the poset of finsets of ι to Profinite, indexing the limit.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
Profinite.indexCone
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
{C : Set ((i : ι) → X i)}
[∀ (i : ι), T2Space (X i)]
[∀ (i : ι), TotallyDisconnectedSpace (X i)]
(hC : IsCompact C)
:
The limit cone on indexFunctor
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
Profinite.isIso_indexCone_lift
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
{C : Set ((i : ι) → X i)}
[∀ (i : ι), T2Space (X i)]
[∀ (i : ι), TotallyDisconnectedSpace (X i)]
(hC : IsCompact C)
:
CategoryTheory.IsIso ((limitConeIsLimit (indexFunctor hC)).lift (indexCone hC))
noncomputable def
Profinite.isoindexConeLift
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
{C : Set ((i : ι) → X i)}
[∀ (i : ι), T2Space (X i)]
[∀ (i : ι), TotallyDisconnectedSpace (X i)]
(hC : IsCompact C)
:
The canonical map from C to the explicit limit as an isomorphism.
Equations
Instances For
noncomputable def
Profinite.asLimitindexConeIso
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
{C : Set ((i : ι) → X i)}
[∀ (i : ι), T2Space (X i)]
[∀ (i : ι), TotallyDisconnectedSpace (X i)]
(hC : IsCompact C)
:
The isomorphism of cones induced by isoindexConeLift.
Equations
Instances For
noncomputable def
Profinite.indexCone_isLimit
{ι : Type u}
{X : ι → Type}
[(i : ι) → TopologicalSpace (X i)]
{C : Set ((i : ι) → X i)}
[∀ (i : ι), T2Space (X i)]
[∀ (i : ι), TotallyDisconnectedSpace (X i)]
(hC : IsCompact C)
:
indexCone is a limit cone.