Documentation

Mathlib.Topology.Algebra.StarSubalgebra

Topological star (sub)algebras #

A topological star algebra over a topological semiring R is a topological semiring with a compatible continuous scalar multiplication by elements of R and a continuous star operation. We reuse typeclass ContinuousSMul for topological algebras.

Results #

This is just a minimal stub for now!

The topological closure of a star subalgebra is still a star subalgebra, which as a star algebra is a topological star algebra.

theorem StarSubalgebra.embedding_inclusion {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} (h : S₁ S₂) :

The StarSubalgebra.inclusion of a star subalgebra is an Embedding.

theorem StarSubalgebra.closedEmbedding_inclusion {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} (h : S₁ S₂) (hS₁ : IsClosed S₁) :

The StarSubalgebra.inclusion of a closed star subalgebra is a ClosedEmbedding.

The closure of a star subalgebra in a topological star algebra as a star subalgebra.

Equations
  • s.topologicalClosure = { carrier := closure s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := , star_mem' := }
Instances For
    theorem StarSubalgebra.topologicalClosure_toSubalgebra_comm {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] (s : StarSubalgebra R A) :
    s.topologicalClosure.toSubalgebra = s.topologicalClosure
    @[simp]
    theorem StarSubalgebra.topologicalClosure_coe {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] (s : StarSubalgebra R A) :
    s.topologicalClosure = closure s
    theorem StarSubalgebra.le_topologicalClosure {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] (s : StarSubalgebra R A) :
    s s.topologicalClosure
    Equations
    • =
    theorem StarSubalgebra.topologicalClosure_minimal {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] {s : StarSubalgebra R A} {t : StarSubalgebra R A} (h : s t) (ht : IsClosed t) :
    s.topologicalClosure t
    theorem StarSubalgebra.topologicalClosure_mono {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] :
    Monotone StarSubalgebra.topologicalClosure
    theorem StarSubalgebra.topologicalClosure_map_le {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] [TopologicalSemiring B] [ContinuousStar B] (s : StarSubalgebra R A) (φ : A →⋆ₐ[R] B) (hφ : IsClosedMap φ) :
    (StarSubalgebra.map φ s).topologicalClosure StarSubalgebra.map φ s.topologicalClosure
    theorem StarSubalgebra.map_topologicalClosure_le {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] [TopologicalSemiring B] [ContinuousStar B] (s : StarSubalgebra R A) (φ : A →⋆ₐ[R] B) (hφ : Continuous φ) :
    StarSubalgebra.map φ s.topologicalClosure (StarSubalgebra.map φ s).topologicalClosure
    theorem StarSubalgebra.topologicalClosure_map {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] [TopologicalSemiring B] [ContinuousStar B] (s : StarSubalgebra R A) (φ : A →⋆ₐ[R] B) (hφ : ClosedEmbedding φ) :
    (StarSubalgebra.map φ s).topologicalClosure = StarSubalgebra.map φ s.topologicalClosure
    theorem Subalgebra.topologicalClosure_star_comm {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] (s : Subalgebra R A) :
    (star s).topologicalClosure = star s.topologicalClosure
    @[reducible, inline]
    abbrev StarSubalgebra.commSemiringTopologicalClosure {R : Type u_1} {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] [T2Space A] (s : StarSubalgebra R A) (hs : ∀ (x y : { x : A // x s }), x * y = y * x) :
    CommSemiring { x : A // x s.topologicalClosure }

    If a star subalgebra of a topological star algebra is commutative, then so is its topological closure. See note [reducible non-instances].

    Equations
    • s.commSemiringTopologicalClosure hs = s.commSemiringTopologicalClosure hs
    Instances For
      @[reducible, inline]
      abbrev StarSubalgebra.commRingTopologicalClosure {R : Type u_4} {A : Type u_5} [CommRing R] [StarRing R] [TopologicalSpace A] [Ring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalRing A] [ContinuousStar A] [T2Space A] (s : StarSubalgebra R A) (hs : ∀ (x y : { x : A // x s }), x * y = y * x) :
      CommRing { x : A // x s.topologicalClosure }

      If a star subalgebra of a topological star algebra is commutative, then so is its topological closure. See note [reducible non-instances].

      Equations
      • s.commRingTopologicalClosure hs = s.commRingTopologicalClosure hs
      Instances For
        theorem StarAlgHom.ext_topologicalClosure {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [T2Space B] {S : StarSubalgebra R A} {φ : { x : A // x S.topologicalClosure } →⋆ₐ[R] B} {ψ : { x : A // x S.topologicalClosure } →⋆ₐ[R] B} (hφ : Continuous φ) (hψ : Continuous ψ) (h : φ.comp (StarSubalgebra.inclusion ) = ψ.comp (StarSubalgebra.inclusion )) :
        φ = ψ

        Continuous StarAlgHoms from the topological closure of a StarSubalgebra whose compositions with the StarSubalgebra.inclusion map agree are, in fact, equal.

        theorem StarAlgHomClass.ext_topologicalClosure {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [TopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [T2Space B] {F : Type u_4} {S : StarSubalgebra R A} [FunLike F { x : A // x S.topologicalClosure } B] [AlgHomClass F R { x : A // x S.topologicalClosure } B] [StarHomClass F { x : A // x S.topologicalClosure } B] {φ : F} {ψ : F} (hφ : Continuous φ) (hψ : Continuous ψ) (h : ∀ (x : { x : A // x S }), φ ((StarSubalgebra.inclusion ) x) = ψ ((StarSubalgebra.inclusion ) x)) :
        φ = ψ

        The topological closure of the subalgebra generated by a single element.

        Equations
        Instances For

          The elementalStarAlgebra generated by a normal element is commutative.

          Equations
          • elementalStarAlgebra.instCommRingSubtypeMemStarSubalgebraOfT2SpaceOfIsStarNormal = (StarAlgebra.adjoin R {x}).commRingTopologicalClosure

          The coercion from an elemental algebra to the full algebra as a ClosedEmbedding.

          theorem elementalStarAlgebra.induction_on (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [StarRing A] [TopologicalSemiring A] [ContinuousStar A] [Algebra R A] [StarModule R A] {x : A} {y : A} (hy : y elementalStarAlgebra R x) {P : (u : A) → u elementalStarAlgebra R xProp} (self : P x ) (star_self : P (star x) ) (algebraMap : ∀ (r : R), P ((_root_.algebraMap R A) r) ) (add : ∀ (u : A) (hu : u elementalStarAlgebra R x) (v : A) (hv : v elementalStarAlgebra R x), P u huP v hvP (u + v) ) (mul : ∀ (u : A) (hu : u elementalStarAlgebra R x) (v : A) (hv : v elementalStarAlgebra R x), P u huP v hvP (u * v) ) (closure : ∀ (s : Set A) (hs : s (elementalStarAlgebra R x)), (∀ (u : A) (hu : u s), P u )∀ (v : A) (hv : v _root_.closure s), P v ) :
          P y hy
          theorem elementalStarAlgebra.starAlgHomClass_ext (R : Type u_1) {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [StarRing A] [TopologicalSemiring A] [ContinuousStar A] [Algebra R A] [StarModule R A] [TopologicalSpace B] [Semiring B] [StarRing B] [Algebra R B] [T2Space B] {F : Type u_4} {a : A} [FunLike F { x : A // x elementalStarAlgebra R a } B] [AlgHomClass F R { x : A // x elementalStarAlgebra R a } B] [StarHomClass F { x : A // x elementalStarAlgebra R a } B] {φ : F} {ψ : F} (hφ : Continuous φ) (hψ : Continuous ψ) (h : φ a, = ψ a, ) :
          φ = ψ