Documentation

Mathlib.Topology.Algebra.Constructions.DomMulAct

Topological space structure on Mᵈᵐᵃ and Mᵈᵃᵃ #

In this file we define TopologicalSpace structure on Mᵈᵐᵃ and Mᵈᵃᵃ and prove basic theorems about these topologies. The topologies on Mᵈᵐᵃ and Mᵈᵃᵃ are the same as the topology on M. Formally, they are induced by DomMulAct.mk.symm and DomAddAct.mk.symm, since the types aren't definitionally equal.

Tags #

topological space, group action, domain action

Put the same topological space structure on Mᵈᵃᵃ as on the original space.

Equations

Put the same topological space structure on Mᵈᵐᵃ as on the original space.

Equations
theorem DomAddAct.continuous_mk {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk
theorem DomMulAct.continuous_mk {M : Type u_1} [TopologicalSpace M] :
Continuous DomMulAct.mk
theorem DomAddAct.continuous_mk_symm {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk.symm
theorem DomMulAct.continuous_mk_symm {M : Type u_1} [TopologicalSpace M] :
Continuous DomMulAct.mk.symm
theorem DomAddAct.mkHomeomorph.proof_1 {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk.toFun
theorem DomAddAct.mkHomeomorph.proof_2 {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk.invFun

DomAddAct.mk as a homeomorphism.

Equations
  • DomAddAct.mkHomeomorph = { toEquiv := DomAddAct.mk, continuous_toFun := , continuous_invFun := }
Instances For
    @[simp]
    theorem DomMulAct.mkHomeomorph_toEquiv {M : Type u_1} [TopologicalSpace M] :
    DomMulAct.mkHomeomorph.toEquiv = DomMulAct.mk
    @[simp]
    theorem DomAddAct.mkHomeomorph_toEquiv {M : Type u_1} [TopologicalSpace M] :
    DomAddAct.mkHomeomorph.toEquiv = DomAddAct.mk

    DomMulAct.mk as a homeomorphism.

    Equations
    • DomMulAct.mkHomeomorph = { toEquiv := DomMulAct.mk, continuous_toFun := , continuous_invFun := }
    Instances For
      @[simp]
      theorem DomAddAct.coe_mkHomeomorph {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph = DomAddAct.mk
      @[simp]
      theorem DomMulAct.coe_mkHomeomorph {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph = DomMulAct.mk
      @[simp]
      theorem DomAddAct.coe_mkHomeomorph_symm {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph.symm = DomAddAct.mk.symm
      @[simp]
      theorem DomMulAct.coe_mkHomeomorph_symm {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph.symm = DomMulAct.mk.symm
      theorem DomAddAct.inducing_mk {M : Type u_1} [TopologicalSpace M] :
      Inducing DomAddAct.mk
      theorem DomMulAct.inducing_mk {M : Type u_1} [TopologicalSpace M] :
      Inducing DomMulAct.mk
      theorem DomAddAct.embedding_mk {M : Type u_1} [TopologicalSpace M] :
      Embedding DomAddAct.mk
      theorem DomMulAct.embedding_mk {M : Type u_1} [TopologicalSpace M] :
      Embedding DomMulAct.mk
      theorem DomAddAct.quotientMap_mk {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomAddAct.mk
      theorem DomMulAct.quotientMap_mk {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomMulAct.mk
      theorem DomAddAct.inducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Inducing DomAddAct.mk.symm
      theorem DomMulAct.inducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Inducing DomMulAct.mk.symm
      theorem DomAddAct.embedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Embedding DomAddAct.mk.symm
      theorem DomMulAct.embedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Embedding DomMulAct.mk.symm
      theorem DomAddAct.openEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      OpenEmbedding DomAddAct.mk.symm
      theorem DomMulAct.openEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      OpenEmbedding DomMulAct.mk.symm
      theorem DomAddAct.quotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomAddAct.mk.symm
      theorem DomMulAct.quotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomMulAct.mk.symm
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      @[simp]
      theorem DomAddAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.map (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk x)
      @[simp]
      theorem DomMulAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.map (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk x)
      @[simp]
      theorem DomAddAct.map_mk_symm_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵃᵃ) :
      Filter.map (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk.symm x)
      @[simp]
      theorem DomMulAct.map_mk_symm_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵐᵃ) :
      Filter.map (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk.symm x)
      @[simp]
      theorem DomAddAct.comap_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵃᵃ) :
      Filter.comap (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk.symm x)
      @[simp]
      theorem DomMulAct.comap_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵐᵃ) :
      Filter.comap (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk.symm x)
      @[simp]
      theorem DomAddAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.comap (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk x)
      @[simp]
      theorem DomMulAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.comap (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk x)