Documentation

Mathlib.SetTheory.Surreal.Basic

Surreal numbers #

The basic theory of surreal numbers, built on top of the theory of combinatorial (pre-)games.

A pregame is Numeric if all the Left options are strictly smaller than all the Right options, and all those options are themselves numeric. In terms of combinatorial games, the numeric games have "frozen"; you can only make your position worse by playing, and Left is some definite "number" of moves ahead (or behind) Right.

A surreal number is an equivalence class of numeric pregames.

In fact, the surreals form a complete ordered field, containing a copy of the reals (and much else besides!) but we do not yet have a complete development.

Order properties #

Surreal numbers inherit the relations and < from games (Surreal.instLE and Surreal.instLT), and these relations satisfy the axioms of a partial order.

Algebraic operations #

In this file, we show that the surreals form a linear ordered commutative group.

In Mathlib.SetTheory.Surreal.Multiplication, we define multiplication and show that the surreals form a linear ordered commutative ring.

One can also map all the ordinals into the surreals!

TODO #

References #

A pre-game is numeric if everything in the L set is less than everything in the R set, and all the elements of L and R are also numeric.

Equations
  • (SetTheory.PGame.mk α β L R).Numeric = ((∀ (i : α) (j : β), L i < R j) (∀ (i : α), (L i).Numeric) ∀ (j : β), (R j).Numeric)
theorem SetTheory.PGame.numeric_def {x : SetTheory.PGame} :
x.Numeric (∀ (i : x.LeftMoves) (j : x.RightMoves), x.moveLeft i < x.moveRight j) (∀ (i : x.LeftMoves), (x.moveLeft i).Numeric) ∀ (j : x.RightMoves), (x.moveRight j).Numeric
theorem SetTheory.PGame.Numeric.mk {x : SetTheory.PGame} (h₁ : ∀ (i : x.LeftMoves) (j : x.RightMoves), x.moveLeft i < x.moveRight j) (h₂ : ∀ (i : x.LeftMoves), (x.moveLeft i).Numeric) (h₃ : ∀ (j : x.RightMoves), (x.moveRight j).Numeric) :
x.Numeric
theorem SetTheory.PGame.Numeric.left_lt_right {x : SetTheory.PGame} (o : x.Numeric) (i : x.LeftMoves) (j : x.RightMoves) :
x.moveLeft i < x.moveRight j
theorem SetTheory.PGame.Numeric.moveLeft {x : SetTheory.PGame} (o : x.Numeric) (i : x.LeftMoves) :
(x.moveLeft i).Numeric
theorem SetTheory.PGame.Numeric.moveRight {x : SetTheory.PGame} (o : x.Numeric) (j : x.RightMoves) :
(x.moveRight j).Numeric
theorem SetTheory.PGame.Numeric.isOption {x' : SetTheory.PGame} {x : SetTheory.PGame} (h : x'.IsOption x) (hx : x.Numeric) :
x'.Numeric
theorem SetTheory.PGame.numeric_rec {C : SetTheory.PGameProp} (H : ∀ (l r : Type u_1) (L : lSetTheory.PGame) (R : rSetTheory.PGame), (∀ (i : l) (j : r), L i < R j)(∀ (i : l), (L i).Numeric)(∀ (i : r), (R i).Numeric)(∀ (i : l), C (L i))(∀ (i : r), C (R i))C (SetTheory.PGame.mk l r L R)) (x : SetTheory.PGame) :
x.NumericC x
theorem SetTheory.PGame.Relabelling.numeric_imp {x : SetTheory.PGame} {y : SetTheory.PGame} (r : x.Relabelling y) (ox : x.Numeric) :
y.Numeric
theorem SetTheory.PGame.Relabelling.numeric_congr {x : SetTheory.PGame} {y : SetTheory.PGame} (r : x.Relabelling y) :
x.Numeric y.Numeric

Relabellings preserve being numeric.

theorem SetTheory.PGame.lf_asymm {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
x.LF y¬y.LF x
theorem SetTheory.PGame.le_of_lf {x : SetTheory.PGame} {y : SetTheory.PGame} (h : x.LF y) (ox : x.Numeric) (oy : y.Numeric) :
x y
theorem SetTheory.PGame.LF.le {x : SetTheory.PGame} {y : SetTheory.PGame} (h : x.LF y) (ox : x.Numeric) (oy : y.Numeric) :
x y

Alias of SetTheory.PGame.le_of_lf.

theorem SetTheory.PGame.lt_of_lf {x : SetTheory.PGame} {y : SetTheory.PGame} (h : x.LF y) (ox : x.Numeric) (oy : y.Numeric) :
x < y
theorem SetTheory.PGame.LF.lt {x : SetTheory.PGame} {y : SetTheory.PGame} (h : x.LF y) (ox : x.Numeric) (oy : y.Numeric) :
x < y

Alias of SetTheory.PGame.lt_of_lf.

theorem SetTheory.PGame.lf_iff_lt {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
x.LF y x < y
theorem SetTheory.PGame.le_iff_forall_lt {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
x y (∀ (i : x.LeftMoves), x.moveLeft i < y) ∀ (j : y.RightMoves), x < y.moveRight j

Definition of x ≤ y on numeric pre-games, in terms of <

theorem SetTheory.PGame.lt_iff_exists_le {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
x < y (∃ (i : y.LeftMoves), x y.moveLeft i) ∃ (j : x.RightMoves), x.moveRight j y

Definition of x < y on numeric pre-games, in terms of

theorem SetTheory.PGame.lt_of_exists_le {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
((∃ (i : y.LeftMoves), x y.moveLeft i) ∃ (j : x.RightMoves), x.moveRight j y)x < y
theorem SetTheory.PGame.lt_def {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
x < y (∃ (i : y.LeftMoves), (∀ (i' : x.LeftMoves), x.moveLeft i' < y.moveLeft i) ∀ (j : (y.moveLeft i).RightMoves), x < (y.moveLeft i).moveRight j) ∃ (j : x.RightMoves), (∀ (i : (x.moveRight j).LeftMoves), (x.moveRight j).moveLeft i < y) ∀ (j' : y.RightMoves), x.moveRight j < y.moveRight j'

The definition of x < y on numeric pre-games, in terms of < two moves later.

theorem SetTheory.PGame.not_fuzzy {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
¬x.Fuzzy y
theorem SetTheory.PGame.lt_or_equiv_or_gt {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
x < y x y y < x
theorem SetTheory.PGame.numeric_of_isEmpty (x : SetTheory.PGame) [IsEmpty x.LeftMoves] [IsEmpty x.RightMoves] :
x.Numeric
theorem SetTheory.PGame.numeric_of_isEmpty_leftMoves (x : SetTheory.PGame) [IsEmpty x.LeftMoves] :
(∀ (j : x.RightMoves), (x.moveRight j).Numeric)x.Numeric
theorem SetTheory.PGame.numeric_of_isEmpty_rightMoves (x : SetTheory.PGame) [IsEmpty x.RightMoves] (H : ∀ (i : x.LeftMoves), (x.moveLeft i).Numeric) :
x.Numeric
theorem SetTheory.PGame.Numeric.neg {x : SetTheory.PGame} :
x.Numeric(-x).Numeric
theorem SetTheory.PGame.insertLeft_numeric {x : SetTheory.PGame} {x' : SetTheory.PGame} (x_num : x.Numeric) (x'_num : x'.Numeric) (h : x' x) :
(x.insertLeft x').Numeric

Inserting a smaller numeric left option into a numeric game results in a numeric game.

theorem SetTheory.PGame.insertRight_numeric {x : SetTheory.PGame} {x' : SetTheory.PGame} (x_num : x.Numeric) (x'_num : x'.Numeric) (h : x x') :
(x.insertRight x').Numeric

Inserting a larger numeric right option into a numeric game results in a numeric game.

theorem SetTheory.PGame.Numeric.moveLeft_lt {x : SetTheory.PGame} (o : x.Numeric) (i : x.LeftMoves) :
x.moveLeft i < x
theorem SetTheory.PGame.Numeric.moveLeft_le {x : SetTheory.PGame} (o : x.Numeric) (i : x.LeftMoves) :
x.moveLeft i x
theorem SetTheory.PGame.Numeric.lt_moveRight {x : SetTheory.PGame} (o : x.Numeric) (j : x.RightMoves) :
x < x.moveRight j
theorem SetTheory.PGame.Numeric.le_moveRight {x : SetTheory.PGame} (o : x.Numeric) (j : x.RightMoves) :
x x.moveRight j
@[irreducible]
theorem SetTheory.PGame.Numeric.add {x : SetTheory.PGame} {y : SetTheory.PGame} :
x.Numericy.Numeric(x + y).Numeric
theorem SetTheory.PGame.Numeric.sub {x : SetTheory.PGame} {y : SetTheory.PGame} (ox : x.Numeric) (oy : y.Numeric) :
(x - y).Numeric
theorem SetTheory.PGame.numeric_nat (n : ) :
(↑n).Numeric

Pre-games defined by natural numbers are numeric.

theorem SetTheory.PGame.numeric_toPGame (o : Ordinal.{u_1}) :
o.toPGame.Numeric

Ordinal games are numeric.

def Surreal :
Type (u_1 + 1)

The type of surreal numbers. These are the numeric pre-games quotiented by the equivalence relation x ≈ y ↔ x ≤ y ∧ y ≤ x. In the quotient, the order becomes a total order.

Equations
Instances For
def Surreal.mk (x : SetTheory.PGame) (h : x.Numeric) :

Construct a surreal number from a numeric pre-game.

Equations
theorem Surreal.mk_eq_mk {x : SetTheory.PGame} {y : SetTheory.PGame} {hx : x.Numeric} {hy : y.Numeric} :
Surreal.mk x hx = Surreal.mk y hy x y
theorem Surreal.mk_eq_zero {x : SetTheory.PGame} {hx : x.Numeric} :
Surreal.mk x hx = 0 x 0
def Surreal.lift {α : Sort u_1} (f : (x : SetTheory.PGame) → x.Numericα) (H : ∀ {x y : SetTheory.PGame} (hx : x.Numeric) (hy : y.Numeric), x.Equiv yf x hx = f y hy) :
Surrealα

Lift an equivalence-respecting function on pre-games to surreals.

Equations
def Surreal.lift₂ {α : Sort u_1} (f : (x : SetTheory.PGame) → (y : SetTheory.PGame) → x.Numericy.Numericα) (H : ∀ {x₁ : SetTheory.PGame} {y₁ : SetTheory.PGame} {x₂ : SetTheory.PGame} {y₂ : SetTheory.PGame} (ox₁ : x₁.Numeric) (oy₁ : y₁.Numeric) (ox₂ : x₂.Numeric) (oy₂ : y₂.Numeric), x₁.Equiv x₂y₁.Equiv y₂f x₁ y₁ ox₁ oy₁ = f x₂ y₂ ox₂ oy₂) :
SurrealSurrealα

Lift a binary equivalence-respecting function on pre-games to surreals.

Equations
Equations
@[simp]
theorem Surreal.mk_le_mk {x : SetTheory.PGame} {y : SetTheory.PGame} {hx : x.Numeric} {hy : y.Numeric} :
theorem Surreal.zero_le_mk {x : SetTheory.PGame} {hx : x.Numeric} :
0 Surreal.mk x hx 0 x
Equations
theorem Surreal.mk_lt_mk {x : SetTheory.PGame} {y : SetTheory.PGame} {hx : x.Numeric} {hy : y.Numeric} :
Surreal.mk x hx < Surreal.mk y hy x < y
theorem Surreal.zero_lt_mk {x : SetTheory.PGame} {hx : x.Numeric} :
0 < Surreal.mk x hx 0 < x
theorem Surreal.mk_moveLeft_lt_mk {x : SetTheory.PGame} (o : x.Numeric) (i : x.LeftMoves) :
Surreal.mk (x.moveLeft i) < Surreal.mk x o

Same as moveLeft_lt, but for Surreal instead of PGame

theorem Surreal.mk_lt_mk_moveRight {x : SetTheory.PGame} (o : x.Numeric) (j : x.RightMoves) :
Surreal.mk x o < Surreal.mk (x.moveRight j)

Same as lt_moveRight, but for Surreal instead of PGame

Addition on surreals is inherited from pre-game addition: the sum of x = {xL | xR} and y = {yL | yR} is {xL + y, x + yL | xR + y, x + yR}.

Equations

Negation for surreal numbers is inherited from pre-game negation: the negation of {L | R} is {-R | -L}.

Equations
theorem Surreal.mk_add {x : SetTheory.PGame} {y : SetTheory.PGame} (hx : x.Numeric) (hy : y.Numeric) :
Surreal.mk (x + y) = Surreal.mk x hx + Surreal.mk y hy
theorem Surreal.mk_sub {x : SetTheory.PGame} {y : SetTheory.PGame} (hx : x.Numeric) (hy : y.Numeric) :
Surreal.mk (x - y) = Surreal.mk x hx - Surreal.mk y hy
Equations
  • One or more equations did not get rendered due to their size.

Casts a Surreal number into a Game.

Equations
  • One or more equations did not get rendered due to their size.
theorem Surreal.zero_toGame :
Surreal.toGame 0 = 0
@[simp]
theorem Surreal.one_toGame :
Surreal.toGame 1 = 1
@[simp]
theorem Surreal.nat_toGame (n : ) :
Surreal.toGame n = n

A small family of surreals is bounded above.

A small set of surreals is bounded above.

A small family of surreals is bounded below.

A small set of surreals is bounded below.

Converts an ordinal into the corresponding surreal.

Equations