Documentation

Mathlib.SetTheory.Ordinal.Topology

Topology of ordinals #

We prove some miscellaneous results involving the order topology of ordinals.

Main results #

theorem Ordinal.nhdsBasis_Ioc {a : Ordinal.{u}} (h : a 0) :
(nhds a).HasBasis (fun (x : Ordinal.{u}) => x < a) fun (x : Ordinal.{u}) => Set.Ioc x a
theorem Ordinal.nhds_eq_pure {a : Ordinal.{u}} :
nhds a = pure a ¬a.IsLimit
theorem Ordinal.isOpen_iff {s : Set Ordinal.{u}} :
IsOpen s os, o.IsLimita < o, Set.Ioo a o s
theorem Ordinal.mem_closure_tfae (a : Ordinal.{u}) (s : Set Ordinal.{u}) :
[a closure s, a closure (s Set.Iic a), (s Set.Iic a).Nonempty sSup (s Set.Iic a) = a, ts, t.Nonempty BddAbove t sSup t = a, ∃ (o : Ordinal.{u}), o 0 ∃ (f : (x : Ordinal.{u}) → x < oOrdinal.{u}), (∀ (x : Ordinal.{u}) (hx : x < o), f x hx s) o.bsup f = a, ∃ (ι : Type u), Nonempty ι ∃ (f : ιOrdinal.{u}), (∀ (i : ι), f i s) ⨆ (i : ι), f i = a].TFAE
theorem Ordinal.mem_closure_iff_iSup {s : Set Ordinal.{u}} {a : Ordinal.{u}} :
a closure s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) ⨆ (i : ι), f i = a
@[deprecated Ordinal.mem_closure_iff_iSup]
theorem Ordinal.mem_closure_iff_sup {s : Set Ordinal.{u}} {a : Ordinal.{u}} :
a closure s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) Ordinal.sup f = a
theorem Ordinal.mem_iff_iSup_of_isClosed {s : Set Ordinal.{u}} {a : Ordinal.{u}} (hs : IsClosed s) :
a s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) ⨆ (i : ι), f i = a
@[deprecated Ordinal.mem_iff_iSup_of_isClosed]
theorem Ordinal.mem_closed_iff_sup {s : Set Ordinal.{u}} {a : Ordinal.{u}} (hs : IsClosed s) :
a s ∃ (ι : Type u) (_ : Nonempty ι) (f : ιOrdinal.{u}), (∀ (i : ι), f i s) Ordinal.sup f = a
theorem Ordinal.mem_closure_iff_bsup {s : Set Ordinal.{u}} {a : Ordinal.{u}} :
a closure s ∃ (o : Ordinal.{u}) (_ : o 0) (f : (a : Ordinal.{u}) → a < oOrdinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi s) o.bsup f = a
theorem Ordinal.mem_closed_iff_bsup {s : Set Ordinal.{u}} {a : Ordinal.{u}} (hs : IsClosed s) :
a s ∃ (o : Ordinal.{u}) (_ : o 0) (f : (a : Ordinal.{u}) → a < oOrdinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi s) o.bsup f = a
theorem Ordinal.isClosed_iff_iSup {s : Set Ordinal.{u}} :
IsClosed s ∀ {ι : Type u}, Nonempty ι∀ (f : ιOrdinal.{u}), (∀ (i : ι), f i s)⨆ (i : ι), f i s
@[deprecated Ordinal.mem_iff_iSup_of_isClosed]
theorem Ordinal.isClosed_iff_sup {s : Set Ordinal.{u}} :
IsClosed s ∀ {ι : Type u}, Nonempty ι∀ (f : ιOrdinal.{u}), (∀ (i : ι), f i s)⨆ (i : ι), f i s
theorem Ordinal.isClosed_iff_bsup {s : Set Ordinal.{u}} :
IsClosed s ∀ {o : Ordinal.{u}}, o 0∀ (f : (a : Ordinal.{u}) → a < oOrdinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi s)o.bsup f s