The ring of Witt vectors is p-torsion free and p-adically complete #
In this file, we prove that the ring of Witt vectors 𝕎 k is p-torsion free and p-adically complete
when k is a perfect ring of characteristic p.
Main declarations #
WittVector.eq_zero_of_p_mul_eq_zero: Ifkis a perfect ring of characteristicp, then the Witt vector𝕎 kisp-torsion free.isAdicCompleteIdealSpanP: Ifkis a perfect ring of characteristicp, then the Witt vector𝕎 kisp-adically complete.
TODO #
Define the map 𝕎 k / p ≃+* k.
theorem
WittVector.eq_zero_of_p_mul_eq_zero
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
[PerfectRing k p]
(x : WittVector p k)
(h : x * ↑p = 0)
:
If k is a perfect ring of characteristic p, then the ring of Witt vectors 𝕎 k is
p-torsion free.
theorem
WittVector.mem_span_p_iff_coeff_zero_eq_zero
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
[PerfectRing k p]
(x : WittVector p k)
:
If k is a perfect ring of characteristic p, a Witt vector x : 𝕎 k falls in ideal generated by
p if and only if its zeroth coefficient is 0.
theorem
WittVector.mem_span_p_pow_iff_le_coeff_eq_zero
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
[PerfectRing k p]
(x : WittVector p k)
(n : ℕ)
:
If k is a perfect ring of characteristic p, a Witt vector x : 𝕎 k falls in ideal generated by
p ^ n if and only if its initial n coefficients are 0.
instance
WittVector.isAdicCompleteIdealSpanP
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
[PerfectRing k p]
:
IsAdicComplete (Ideal.span {↑p}) (WittVector p k)
If k is a perfect ring of characteristic p, then the ring of Witt vectors 𝕎 k
is p-adically complete.