The valuation on a quotient ring #
The support of a valuation v : Valuation R Γ₀ is supp v. If J is an ideal of R
with h : J ⊆ supp v then the induced valuation
on R / J = Ideal.Quotient J is onQuot v h.
def
Valuation.onQuotVal
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
R ⧸ J → Γ₀
If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function.
Note: it's just the function; the valuation is onQuot hJ.
Equations
- v.onQuotVal hJ q = Quotient.liftOn' q ⇑v ⋯
Instances For
def
Valuation.onQuot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
The extension of valuation v on R to valuation on R / J if J ⊆ supp v.
Equations
Instances For
@[simp]
theorem
Valuation.onQuot_comap_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
theorem
Valuation.self_le_supp_comap
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(J : Ideal R)
(v : Valuation (R ⧸ J) Γ₀)
:
@[simp]
theorem
Valuation.comap_onQuot_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(J : Ideal R)
(v : Valuation (R ⧸ J) Γ₀)
:
theorem
Valuation.supp_quot_supp
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
:
def
AddValuation.onQuotVal
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
R ⧸ J → Γ₀
If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function.
Note: it's just the function; the valuation is onQuot hJ.
Equations
- v.onQuotVal hJ = Valuation.onQuotVal v hJ
Instances For
def
AddValuation.onQuot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
AddValuation (R ⧸ J) Γ₀
The extension of valuation v on R to valuation on R / J if J ⊆ supp v.
Equations
- v.onQuot hJ = Valuation.onQuot v hJ
Instances For
@[simp]
theorem
AddValuation.onQuot_comap_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
theorem
AddValuation.comap_supp
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{S : Type u_3}
[CommRing S]
(f : S →+* R)
:
theorem
AddValuation.self_le_supp_comap
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(J : Ideal R)
(v : AddValuation (R ⧸ J) Γ₀)
:
@[simp]
theorem
AddValuation.comap_onQuot_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(J : Ideal R)
(v : AddValuation (R ⧸ J) Γ₀)
:
theorem
AddValuation.supp_quot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ v.supp)
:
The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.
theorem
AddValuation.supp_quot_supp
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
: