Documentation

Mathlib.RingTheory.Valuation.AlgebraInstances

Algebra instances #

This file contains several Algebra and IsScalarTower instances related to extensions of a field with a valuation, as well as their unit balls.

Main Definitions #

Main Results #

theorem ValuationSubring.algebraMap_injective {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] :
Function.Injective (algebraMap { x : K // x v.valuationSubring } L)
theorem ValuationSubring.isIntegral_of_mem_ringOfIntegers {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] {x : L} (hx : x integralClosure { x : K // x v.valuationSubring } L) :
IsIntegral { x : K // x v.valuationSubring } x, hx
theorem ValuationSubring.isIntegral_of_mem_ringOfIntegers' {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] {x : { x : L // x integralClosure { x : K // x v.valuationSubring } L }} :
IsIntegral { x : K // x v.valuationSubring } x
instance ValuationSubring.instIsScalarTowerSubtypeMemValuationSubringWithZeroMultiplicativeInt {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] (E : Type u_3) [Field E] [Algebra K E] [Algebra L E] [IsScalarTower K L E] :
IsScalarTower { x : K // x v.valuationSubring } L E
Equations
  • =
instance ValuationSubring.algebra {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] (E : Type u_3) [Field E] [Algebra K E] [Algebra L E] [IsScalarTower K L E] :
Algebra { x : L // x integralClosure { x : K // x v.valuationSubring } L } { x : E // x integralClosure { x : K // x v.valuationSubring } E }

Given an algebra between two field extensions L and E of a field K with a valuation v, create an algebra between their two rings of integers.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def ValuationSubring.equiv {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] (R : Type u_3) [CommRing R] [Algebra { x : K // x v.valuationSubring } R] [Algebra R L] [IsScalarTower { x : K // x v.valuationSubring } R L] [IsIntegralClosure R { x : K // x v.valuationSubring } L] :
{ x : L // x integralClosure { x : K // x v.valuationSubring } L } ≃+* R

A ring equivalence between the integral closure of the valuation subring of K in L and a ring R satisfying isIntegralClosure R v.valuationSubring L.

Equations
Instances For
    theorem ValuationSubring.integralClosure_algebraMap_injective {K : Type u_1} [Field K] (v : Valuation K (WithZero (Multiplicative ))) (L : Type u_2) [Field L] [Algebra K L] :
    Function.Injective (algebraMap { x : K // x v.valuationSubring } { x : L // x integralClosure { x : K // x v.valuationSubring } L })