Basic Properties of Simple rings #
A ring R
is simple if it has only two two-sided ideals, namely ⊥
and ⊤
.
Main results #
IsSimpleRing.nontrivial
: simple rings are non-trivial.DivisionRing.IsSimpleRing
: division rings are simple.IsSimpleRing.center_isField
: the center of a simple ring is a field.
instance
IsSimpleRing.instIsSimpleOrderTwoSidedIdeal
{R : Type u_1}
[NonUnitalNonAssocRing R]
[IsSimpleRing R]
:
Equations
- ⋯ = ⋯
instance
IsSimpleRing.instNontrivial
{R : Type u_1}
[NonUnitalNonAssocRing R]
[simple : IsSimpleRing R]
:
Equations
- ⋯ = ⋯
theorem
IsSimpleRing.one_mem_of_ne_bot
{A : Type u_2}
[NonAssocRing A]
[IsSimpleRing A]
(I : TwoSidedIdeal A)
(hI : I ≠ ⊥)
:
1 ∈ I
theorem
IsSimpleRing.one_mem_of_ne_zero_mem
{A : Type u_2}
[NonAssocRing A]
[IsSimpleRing A]
(I : TwoSidedIdeal A)
{x : A}
(hx : x ≠ 0)
(hxI : x ∈ I)
:
1 ∈ I
theorem
IsSimpleRing.of_eq_bot_or_eq_top
{R : Type u_1}
[NonUnitalNonAssocRing R]
[Nontrivial R]
(h : ∀ (I : TwoSidedIdeal R), I = ⊥ ∨ I = ⊤)
:
Equations
- ⋯ = ⋯
theorem
IsSimpleRing.isField_center
(A : Type u_2)
[Ring A]
[IsSimpleRing A]
:
IsField { x : A // x ∈ Subring.center A }