The meta properties of surjective ring homomorphisms. #
Main results #
Let R be a commutative ring, M be a submonoid of R.
surjective_localizationPreserves:M⁻¹R →+* M⁻¹Sis surjective ifR →+* Sis surjective.surjective_ofLocalizationSpan:R →+* Sis surjective if there exists a set{ r }that spansRsuch thatRᵣ →+* Sᵣis surjective.surjective_localRingHom_of_surjective: A surjective ring homomorphismR →+* Sinduces a surjective homomorphismR_{f⁻¹(P)} →+* S_Pfor every prime idealPofS.
theorem
RingHom.surjective_stableUnderComposition :
StableUnderComposition fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
theorem
RingHom.surjective_respectsIso :
RespectsIso fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
theorem
RingHom.surjective_isStableUnderBaseChange :
IsStableUnderBaseChange fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
theorem
RingHom.surjective_localizationPreserves :
LocalizationPreserves fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
M⁻¹R →+* M⁻¹S is surjective if R →+* S is surjective.
theorem
RingHom.surjective_ofLocalizationSpan :
OfLocalizationSpan fun {X Y : Type u_1} [CommRing X] [CommRing Y] (f : X →+* Y) => Function.Surjective ⇑f
R →+* S is surjective if there exists a set { r } that spans R such that
Rᵣ →+* Sᵣ is surjective.
theorem
RingHom.surjective_localRingHom_of_surjective
{R S : Type u}
[CommRing R]
[CommRing S]
(f : R →+* S)
(h : Function.Surjective ⇑f)
(P : Ideal S)
[P.IsPrime]
:
Function.Surjective ⇑(Localization.localRingHom (Ideal.comap f P) P f ⋯)
A surjective ring homomorphism R →+* S induces a surjective homomorphism R_{f⁻¹(P)} →+* S_P
for every prime ideal P of S.