Rees algebra #
The Rees algebra of an ideal I
is the subalgebra R[It]
of R[t]
defined as R[It] = ⨁ₙ Iⁿ tⁿ
.
This is used to prove the Artin-Rees lemma, and will potentially enable us to calculate some
blowup in the future.
Main definition #
reesAlgebra
: The Rees algebra of an idealI
, defined as a subalgebra ofR[X]
.adjoin_monomial_eq_reesAlgebra
: The Rees algebra is generated by the degree one elements.reesAlgebra.fg
: The Rees algebra of a f.g. ideal is of finite type. In particular, this implies that the rees algebra over a noetherian ring is still noetherian.
The Rees algebra of an ideal I
, defined as the subalgebra of R[X]
whose i
-th coefficient
falls in I ^ i
.
Equations
- reesAlgebra I = { carrier := {f : Polynomial R | ∀ (i : ℕ), f.coeff i ∈ I ^ i}, mul_mem' := ⋯, one_mem' := ⋯, add_mem' := ⋯, zero_mem' := ⋯, algebraMap_mem' := ⋯ }
Instances For
theorem
mem_reesAlgebra_iff_support
{R : Type u}
[CommRing R]
(I : Ideal R)
(f : Polynomial R)
:
f ∈ reesAlgebra I ↔ ∀ i ∈ f.support, f.coeff i ∈ I ^ i
theorem
reesAlgebra.monomial_mem
{R : Type u}
[CommRing R]
{I : Ideal R}
{i : ℕ}
{r : R}
:
(Polynomial.monomial i) r ∈ reesAlgebra I ↔ r ∈ I ^ i
theorem
monomial_mem_adjoin_monomial
{R : Type u}
[CommRing R]
{I : Ideal R}
{n : ℕ}
{r : R}
(hr : r ∈ I ^ n)
:
(Polynomial.monomial n) r ∈ Algebra.adjoin R ↑(Submodule.map (Polynomial.monomial 1) I)
theorem
adjoin_monomial_eq_reesAlgebra
{R : Type u}
[CommRing R]
(I : Ideal R)
:
Algebra.adjoin R ↑(Submodule.map (Polynomial.monomial 1) I) = reesAlgebra I
instance
instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing
{R : Type u}
[CommRing R]
{I : Ideal R}
[IsNoetherianRing R]
:
Algebra.FiniteType R { x : Polynomial R // x ∈ reesAlgebra I }
Equations
- ⋯ = ⋯
instance
instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra
{R : Type u}
[CommRing R]
{I : Ideal R}
[IsNoetherianRing R]
:
IsNoetherianRing { x : Polynomial R // x ∈ reesAlgebra I }
Equations
- ⋯ = ⋯