Definition of well-known power series #
In this file we define the following power series:
PowerSeries.invUnitsSub: givenu : Rˣ, this is the series for1 / (u - x). It is given by∑ n, x ^ n /ₚ u ^ (n + 1).PowerSeries.invOneSubPow: given a commutative ringSand a numberd : ℕ,PowerSeries.invOneSubPow S dis the multiplicative inverse of(1 - X) ^ dinS⟦X⟧ˣ. Whendis0,PowerSeries.invOneSubPow S dwill just be1. Whendis positive,PowerSeries.invOneSubPow S dwill be∑ n, Nat.choose (d - 1 + n) (d - 1).PowerSeries.sin,PowerSeries.cos,PowerSeries.exp: power series for sin, cosine, and exponential functions.
The power series for 1 / (u - x).
Equations
- PowerSeries.invUnitsSub u = PowerSeries.mk fun (n : ℕ) => 1 /ₚ u ^ (n + 1)
Instances For
Note that mk 1 is the constant function 1 so the power series 1 + X + X^2 + .... This theorem
states that for any d : ℕ, (1 + X + X^2 + ... : S⟦X⟧) ^ (d + 1) is equal to the power series
mk fun n => Nat.choose (d + n) d : S⟦X⟧.
Given a natural number d : ℕ and a commutative ring S, PowerSeries.invOneSubPow S d is the
multiplicative inverse of (1 - X) ^ d in S⟦X⟧ˣ. When d is 0, PowerSeries.invOneSubPow S d
will just be 1. When d is positive, PowerSeries.invOneSubPow S d will be the power series
mk fun n => Nat.choose (d - 1 + n) (d - 1).
Equations
- PowerSeries.invOneSubPow S 0 = 1
- PowerSeries.invOneSubPow S d.succ = { val := PowerSeries.mk fun (n : ℕ) => ↑((d + n).choose d), inv := (1 - PowerSeries.X) ^ (d + 1), val_inv := ⋯, inv_val := ⋯ }
Instances For
The theorem PowerSeries.mk_one_mul_one_sub_eq_one implies that 1 - X is a unit in S⟦X⟧
whose inverse is the power series 1 + X + X^2 + .... This theorem states that for any d : ℕ,
PowerSeries.invOneSubPow S d is equal to (1 - X)⁻¹ ^ d.
Power series for the exponential function at zero.
Equations
- PowerSeries.exp A = PowerSeries.mk fun (n : ℕ) => (algebraMap ℚ A) (1 / ↑n.factorial)
Instances For
Power series for the sine function at zero.
Equations
- PowerSeries.sin A = PowerSeries.mk fun (n : ℕ) => if Even n then 0 else (algebraMap ℚ A) ((-1) ^ (n / 2) / ↑n.factorial)
Instances For
Power series for the cosine function at zero.
Equations
- PowerSeries.cos A = PowerSeries.mk fun (n : ℕ) => if Even n then (algebraMap ℚ A) ((-1) ^ (n / 2) / ↑n.factorial) else 0
Instances For
Shows that $\sum_{k = 0}^{n - 1} (e^{X})^k = \sum_{p = 0}^{\infty} \sum_{k = 0}^{n - 1} \frac{k^p}{p!}X^p$.