Gauss norm for polynomials #
This file defines the Gauss norm for polynomials. Given a polynomial p in R[X], a function
v : R → ℝ and a real number c, the Gauss norm is defined as the supremum of the set of all
values of v (p.coeff i) * c ^ i for all i in the support of p.
In the file RingTheory/PowerSeries/GaussNorm, the Gauss norm is defined for power series. This is
a generalization of the Gauss norm defined in this file in case v is a non-negative function with
v 0 = 0 and c ≥ 0.
Main Definitions and Results #
Polynomial.gaussNormis the supremum of the set of all values ofv (p.coeff i) * c ^ ifor alliin the support ofp, wherepis a polynomial inR[X],v : R → ℝis a function andcis a real number.Polynomial.gaussNorm_coe_powerSeries: ifvis a non-negative function withv 0 = 0andcis nonnegative, the Gauss norm of a polynomial is equal to its Gauss norm as a power series.Polynomial.gaussNorm_nonneg: ifvis a non-negative function, then the Gauss norm is non-negative.Polynomial.gaussNorm_eq_zero_iff: ifv x = 0 ↔ x = 0for allx : R, then the Gauss norm is zero if and only if the polynomial is zero.
def
Polynomial.gaussNorm
{R : Type u_1}
{F : Type u_2}
[Semiring R]
[FunLike F R ℝ]
(v : F)
(c : ℝ)
(p : Polynomial R)
:
Given a polynomial p in R[X], a function v : R → ℝ and a real number c, the Gauss norm
is defined as the supremum of the set of all values of v (p.coeff i) * c ^ i for all i in the
support of p.
Equations
Instances For
@[simp]
theorem
Polynomial.gaussNorm_coe_powerSeries
{R : Type u_1}
{F : Type u_2}
[Semiring R]
[FunLike F R ℝ]
(v : F)
{c : ℝ}
(p : Polynomial R)
[ZeroHomClass F R ℝ]
[NonnegHomClass F R ℝ]
(hc : 0 ≤ c)
:
@[simp]
theorem
Polynomial.gaussNorm_eq_zero_iff
{R : Type u_1}
{F : Type u_2}
[Semiring R]
[FunLike F R ℝ]
(v : F)
{c : ℝ}
(p : Polynomial R)
[ZeroHomClass F R ℝ]
[NonnegHomClass F R ℝ]
(h_eq_zero : ∀ (x : R), v x = 0 → x = 0)
(hc : 0 < c)
:
theorem
Polynomial.gaussNorm_nonneg
{R : Type u_1}
{F : Type u_2}
[Semiring R]
[FunLike F R ℝ]
(v : F)
{c : ℝ}
(p : Polynomial R)
(hc : 0 ≤ c)
[NonnegHomClass F R ℝ]
:
theorem
Polynomial.le_gaussNorm
{R : Type u_1}
{F : Type u_2}
[Semiring R]
[FunLike F R ℝ]
(v : F)
{c : ℝ}
(p : Polynomial R)
[ZeroHomClass F R ℝ]
[NonnegHomClass F R ℝ]
(hc : 0 ≤ c)
(i : ℕ)
: