Multiplicity of a divisor #
For a commutative monoid, this file introduces the notion of multiplicity of a divisor and proves several basic results on it.
Main definitions #
emultiplicity a b: for two elementsaandbof a commutative monoid returns the largest numbernsuch thata ^ n ∣ bor infinity, written⊤, ifa ^ n ∣ bfor all natural numbersn.multiplicity a b: aℕ-valued version ofmultiplicity, defaulting for1instead of⊤. The reason for using1as a default value instead of0is to havemultiplicity_eq_zero_iff.FiniteMultiplicity a b: a predicate denoting that the multiplicity ofainbis finite.
FiniteMultiplicity a b indicates that the multiplicity of a in b is finite.
Instances For
Alias of FiniteMultiplicity.
FiniteMultiplicity a b indicates that the multiplicity of a in b is finite.
Equations
Instances For
emultiplicity a b returns the largest natural number n such that
a ^ n ∣ b, as an ℕ∞. If ∀ n, a ^ n ∣ b then it returns ⊤.
Equations
- emultiplicity a b = if h : FiniteMultiplicity a b then ↑(Nat.find h) else ⊤
Instances For
A ℕ-valued version of emultiplicity, returning 1 instead of ⊤.
Equations
- multiplicity a b = WithTop.untopD 1 (emultiplicity a b)
Instances For
Alias of the forward direction of finiteMultiplicity_iff_emultiplicity_ne_top.
Alias of the forward direction of finiteMultiplicity_iff_emultiplicity_ne_top.
Alias of the forward direction of finiteMultiplicity_iff_emultiplicity_ne_top.
Alias of the forward direction of finiteMultiplicity_iff_emultiplicity_ne_top.
Alias of the forward direction of finiteMultiplicity_iff_emultiplicity_ne_top.
Alias of FiniteMultiplicity.emultiplicity_eq_iff_multiplicity_eq.
Alias of FiniteMultiplicity.emultiplicity_le_of_multiplicity_le.
Alias of FiniteMultiplicity.le_multiplicity_of_le_emultiplicity.
Alias of FiniteMultiplicity.emultiplicity_lt_of_multiplicity_lt.
Alias of FiniteMultiplicity.lt_multiplicity_of_lt_emultiplicity.
Alias of FiniteMultiplicity.def.
Alias of FiniteMultiplicity.not_dvd_of_one_right.
Alias of FiniteMultiplicity.not_iff_forall.
Alias of FiniteMultiplicity.not_unit.
Alias of FiniteMultiplicity.mul_left.
Alias of FiniteMultiplicity.multiplicity_eq_iff.
Alias of FiniteMultiplicity.not_of_isUnit_left.
Alias of FiniteMultiplicity.not_of_one_left.
Alias of FiniteMultiplicity.one_right.
Alias of FiniteMultiplicity.not_of_unit_left.
Alias of FiniteMultiplicity.multiplicity_le_multiplicity_iff.
Alias of Nat.finiteMultiplicity_iff.
Alias of the reverse direction of dvd_iff_multiplicity_pos.
Alias of FiniteMultiplicity.mul_right.
Alias of FiniteMultiplicity.ne_zero.
Alias of FiniteMultiplicity.or_of_add.
Alias of FiniteMultiplicity.neg_iff.
Alias of the reverse direction of FiniteMultiplicity.neg_iff.
Alias of the reverse direction of FiniteMultiplicity.neg_iff.
Alias of the reverse direction of FiniteMultiplicity.neg_iff.
Alias of Prime.finiteMultiplicity_mul.
Alias of FiniteMultiplicity.mul_iff.
Alias of FiniteMultiplicity.pow.
Alias of FiniteMultiplicity.emultiplicity_self.
Alias of FiniteMultiplicity.multiplicity_pow.
Alias of Int.finiteMultiplicity_iff_finiteMultiplicity_natAbs.
Alias of Int.finiteMultiplicity_iff.
Equations
- x✝¹.decidableFiniteMultiplicity x✝ = decidable_of_iff' (x✝¹ ≠ 1 ∧ 0 < x✝) ⋯
Alias of Nat.decidableFiniteMultiplicity.
Instances For
Equations
- x✝¹.decidableMultiplicityFinite x✝ = decidable_of_iff' (x✝¹.natAbs ≠ 1 ∧ x✝ ≠ 0) ⋯
Alias of Int.decidableMultiplicityFinite.