Submonoid of inverses #
Main definitions #
IsLocalization.invSubmonoid M S
is the submonoid ofS = M⁻¹R
consisting of inverses of each elementx ∈ M
Implementation notes #
See Mathlib/RingTheory/Localization/Basic.lean
for a design overview.
Tags #
localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions
def
IsLocalization.invSubmonoid
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
:
The submonoid of S = M⁻¹R
consisting of { 1 / x | x ∈ M }
.
Equations
- IsLocalization.invSubmonoid M S = (Submonoid.map (algebraMap R S) M).leftInv
Instances For
theorem
IsLocalization.submonoid_map_le_is_unit
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
Submonoid.map (algebraMap R S) M ≤ IsUnit.submonoid S
@[reducible, inline]
noncomputable abbrev
IsLocalization.equivInvSubmonoid
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
{ x : S // x ∈ Submonoid.map (algebraMap R S) M } ≃* { x : S // x ∈ IsLocalization.invSubmonoid M S }
There is an equivalence of monoids between the image of M
and invSubmonoid
.
Equations
- IsLocalization.equivInvSubmonoid M S = ((Submonoid.map (algebraMap R S) M).leftInvEquiv ⋯).symm
Instances For
noncomputable def
IsLocalization.toInvSubmonoid
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
{ x : R // x ∈ M } →* { x : S // x ∈ IsLocalization.invSubmonoid M S }
There is a canonical map from M
to invSubmonoid
sending x
to 1 / x
.
Equations
- IsLocalization.toInvSubmonoid M S = (IsLocalization.equivInvSubmonoid M S).toMonoidHom.comp ((↑(algebraMap R S)).submonoidMap M)
Instances For
theorem
IsLocalization.toInvSubmonoid_surjective
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
@[simp]
theorem
IsLocalization.toInvSubmonoid_mul
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(m : { x : R // x ∈ M })
:
↑((IsLocalization.toInvSubmonoid M S) m) * (algebraMap R S) ↑m = 1
@[simp]
theorem
IsLocalization.mul_toInvSubmonoid
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(m : { x : R // x ∈ M })
:
(algebraMap R S) ↑m * ↑((IsLocalization.toInvSubmonoid M S) m) = 1
@[simp]
theorem
IsLocalization.smul_toInvSubmonoid
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(m : { x : R // x ∈ M })
:
m • ↑((IsLocalization.toInvSubmonoid M S) m) = 1
theorem
IsLocalization.surj''
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
{S : Type u_2}
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(z : S)
:
∃ (r : R) (m : { x : R // x ∈ M }), z = r • ↑((IsLocalization.toInvSubmonoid M S) m)
theorem
IsLocalization.toInvSubmonoid_eq_mk'
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
{S : Type u_2}
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(x : { x : R // x ∈ M })
:
↑((IsLocalization.toInvSubmonoid M S) x) = IsLocalization.mk' S 1 x
theorem
IsLocalization.mem_invSubmonoid_iff_exists_mk'
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
{S : Type u_2}
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(x : S)
:
x ∈ IsLocalization.invSubmonoid M S ↔ ∃ (m : { x : R // x ∈ M }), IsLocalization.mk' S 1 m = x
theorem
IsLocalization.span_invSubmonoid
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
Submodule.span R ↑(IsLocalization.invSubmonoid M S) = ⊤
theorem
IsLocalization.finiteType_of_monoid_fg
{R : Type u_1}
[CommRing R]
(M : Submonoid R)
(S : Type u_2)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
[Monoid.FG { x : R // x ∈ M }]
: