Artinian rings over jacobson rings #
Main results #
Module.finite_iff_isArtinianRing: IfAis a finite type algebra over an artinian ringR, thenAis finite overRif and only ifAis an artinian ring.
theorem
Module.finite_of_isSemisimpleRing
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
[Algebra.FiniteType R A]
[IsJacobsonRing R]
[IsSemisimpleRing A]
:
Module.Finite R A
theorem
Module.finite_of_isArtinianRing
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
[Algebra.FiniteType R A]
[IsJacobsonRing R]
[IsArtinianRing A]
:
Module.Finite R A
If A is a finite type algebra over R, then A is an artinian ring and R is jacobson
implies A is finite over R.
theorem
Module.finite_iff_isArtinianRing
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
[Algebra.FiniteType R A]
[IsArtinianRing R]
:
If A is a finite type algebra over an artinian ring R,
then A is finite over R if and only if A is an artinian ring.
theorem
Module.finite_iff_krullDimLE_zero
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
[Algebra.FiniteType R A]
[IsArtinianRing R]
:
If A is a finite type algebra over an artinian ring R,
then A is finite over R if and only if dim A = 0.