Documentation

Mathlib.RingTheory.Ideal.Cotangent

The module I ⧸ I ^ 2 #

In this file, we provide special API support for the module I ⧸ I ^ 2. The official definition is a quotient module of I, but the alternative definition as an ideal of R ⧸ I ^ 2 is also given, and the two are R-equivalent as in Ideal.cotangentEquivIdeal.

Additional support is also given to the cotangent space m ⧸ m ^ 2 of a local ring.

def Ideal.Cotangent {R : Type u} [CommRing R] (I : Ideal R) :

I ⧸ I ^ 2 as a quotient of I.

Equations
Instances For
    instance Ideal.instAddCommGroupCotangent {R : Type u} [CommRing R] (I : Ideal R) :
    AddCommGroup I.Cotangent
    Equations
    • I.instAddCommGroupCotangent = id inferInstance
    instance Ideal.cotangentModule {R : Type u} [CommRing R] (I : Ideal R) :
    Module (R I) I.Cotangent
    Equations
    • I.cotangentModule = id inferInstance
    instance Ideal.instInhabitedCotangent {R : Type u} [CommRing R] (I : Ideal R) :
    Inhabited I.Cotangent
    Equations
    • I.instInhabitedCotangent = { default := 0 }
    instance Ideal.Cotangent.isScalarTower {R : Type u} {S : Type v} {S' : Type w} [CommRing R] [CommSemiring S] [Algebra S R] [CommSemiring S'] [Algebra S' R] [Algebra S S'] [IsScalarTower S S' R] (I : Ideal R) :
    IsScalarTower S S' I.Cotangent
    Equations
    • =
    instance Ideal.instIsNoetherianCotangentOfSubtypeMem {R : Type u} [CommRing R] (I : Ideal R) [IsNoetherian R { x : R // x I }] :
    IsNoetherian R I.Cotangent
    Equations
    • =
    theorem Ideal.toCotangent_apply {R : Type u} [CommRing R] (I : Ideal R) :
    ∀ (a : { x : R // x I }), I.toCotangent a = Submodule.Quotient.mk a
    def Ideal.toCotangent {R : Type u} [CommRing R] (I : Ideal R) :
    { x : R // x I } →ₗ[R] I.Cotangent

    The quotient map from I to I ⧸ I ^ 2.

    Equations
    Instances For
      theorem Ideal.mem_toCotangent_ker {R : Type u} [CommRing R] (I : Ideal R) {x : { x : R // x I }} :
      x LinearMap.ker I.toCotangent x I ^ 2
      theorem Ideal.toCotangent_eq {R : Type u} [CommRing R] (I : Ideal R) {x : { x : R // x I }} {y : { x : R // x I }} :
      I.toCotangent x = I.toCotangent y x - y I ^ 2
      theorem Ideal.toCotangent_eq_zero {R : Type u} [CommRing R] (I : Ideal R) (x : { x : R // x I }) :
      I.toCotangent x = 0 x I ^ 2
      theorem Ideal.toCotangent_surjective {R : Type u} [CommRing R] (I : Ideal R) :
      Function.Surjective I.toCotangent
      theorem Ideal.toCotangent_range {R : Type u} [CommRing R] (I : Ideal R) :
      LinearMap.range I.toCotangent =
      def Ideal.cotangentToQuotientSquare {R : Type u} [CommRing R] (I : Ideal R) :
      I.Cotangent →ₗ[R] R I ^ 2

      The inclusion map I ⧸ I ^ 2 to R ⧸ I ^ 2.

      Equations
      Instances For
        theorem Ideal.to_quotient_square_comp_toCotangent {R : Type u} [CommRing R] (I : Ideal R) :
        I.cotangentToQuotientSquare ∘ₗ I.toCotangent = Submodule.mkQ (I ^ 2) ∘ₗ Submodule.subtype I
        @[simp]
        theorem Ideal.toCotangent_to_quotient_square {R : Type u} [CommRing R] (I : Ideal R) (x : { x : R // x I }) :
        I.cotangentToQuotientSquare (I.toCotangent x) = (Submodule.mkQ (I ^ 2)) x
        theorem Ideal.Cotangent.smul_eq_zero_of_mem {R : Type u} [CommRing R] {I : Ideal R} {x : R} (hx : x I) (m : I.Cotangent) :
        x m = 0
        theorem Ideal.isTorsionBySet_cotangent {R : Type u} [CommRing R] (I : Ideal R) :
        Module.IsTorsionBySet R I.Cotangent I
        def Ideal.cotangentIdeal {R : Type u} [CommRing R] (I : Ideal R) :
        Ideal (R I ^ 2)

        I ⧸ I ^ 2 as an ideal of R ⧸ I ^ 2.

        Equations
        Instances For
          theorem Ideal.cotangentIdeal_square {R : Type u} [CommRing R] (I : Ideal R) :
          I.cotangentIdeal ^ 2 =
          theorem Ideal.to_quotient_square_range {R : Type u} [CommRing R] (I : Ideal R) :
          LinearMap.range I.cotangentToQuotientSquare = Submodule.restrictScalars R I.cotangentIdeal
          noncomputable def Ideal.cotangentEquivIdeal {R : Type u} [CommRing R] (I : Ideal R) :
          I.Cotangent ≃ₗ[R] { x : R I ^ 2 // x I.cotangentIdeal }

          The equivalence of the two definitions of I / I ^ 2, either as the quotient of I or the ideal of R / I ^ 2.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Ideal.cotangentEquivIdeal_apply {R : Type u} [CommRing R] (I : Ideal R) (x : I.Cotangent) :
            (I.cotangentEquivIdeal x) = I.cotangentToQuotientSquare x
            theorem Ideal.cotangentEquivIdeal_symm_apply {R : Type u} [CommRing R] (I : Ideal R) (x : R) (hx : x I) :
            I.cotangentEquivIdeal.symm (Submodule.mkQ (I ^ 2)) x, = I.toCotangent x, hx
            def AlgHom.kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
            A RingHom.ker f.toRingHom ^ 2 →ₐ[R] B

            The lift of f : A →ₐ[R] B to A ⧸ J ^ 2 →ₐ[R] B with J being the kernel of f.

            Equations
            Instances For
              theorem AlgHom.ker_kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
              RingHom.ker f.kerSquareLift.toRingHom = (RingHom.ker f.toRingHom).cotangentIdeal
              instance Ideal.Algebra.kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} [CommRing A] [Algebra R A] :
              Equations
              • Ideal.Algebra.kerSquareLift = (Algebra.ofId R A).kerSquareLift.toAlgebra
              Equations
              • =
              def Ideal.quotCotangent {R : Type u} [CommRing R] (I : Ideal R) :
              (R I ^ 2) I.cotangentIdeal ≃+* R I

              The quotient ring of I ⧸ I ^ 2 is R ⧸ I.

              Equations
              Instances For
                def Ideal.mapCotangent {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I₁ : Ideal A) (I₂ : Ideal B) (f : A →ₐ[R] B) (h : I₁ Ideal.comap f I₂) :
                I₁.Cotangent →ₗ[R] I₂.Cotangent

                The map I/I² → J/J² if I ≤ f⁻¹(J).

                Equations
                Instances For
                  @[simp]
                  theorem Ideal.mapCotangent_toCotangent {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I₁ : Ideal A) (I₂ : Ideal B) (f : A →ₐ[R] B) (h : I₁ Ideal.comap f I₂) (x : { x : A // x I₁ }) :
                  (I₁.mapCotangent I₂ f h) (I₁.toCotangent x) = I₂.toCotangent f x,
                  @[reducible, inline]
                  abbrev LocalRing.CotangentSpace (R : Type u_1) [CommRing R] [LocalRing R] :
                  Type u_1

                  The A ⧸ I-vector space I ⧸ I ^ 2.

                  Equations
                  Instances For