noncomputable def
Ideal.basisSpanSingleton
{ι : Type u_1}
{R : Type u_2}
{S : Type u_3}
[CommSemiring R]
[CommRing S]
[IsDomain S]
[Algebra R S]
(b : Basis ι R S)
{x : S}
(hx : x ≠ 0)
:
Basis ι R { x_1 : S // x_1 ∈ Ideal.span {x} }
A basis on S
gives a basis on Ideal.span {x}
, by multiplying everything by x
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Ideal.basisSpanSingleton_apply
{ι : Type u_1}
{R : Type u_2}
{S : Type u_3}
[CommSemiring R]
[CommRing S]
[IsDomain S]
[Algebra R S]
(b : Basis ι R S)
{x : S}
(hx : x ≠ 0)
(i : ι)
:
↑((Ideal.basisSpanSingleton b hx) i) = x * b i
@[simp]
theorem
Ideal.constr_basisSpanSingleton
{ι : Type u_1}
{R : Type u_2}
{S : Type u_3}
[CommSemiring R]
[CommRing S]
[IsDomain S]
[Algebra R S]
{N : Type u_4}
[Semiring N]
[Module N S]
[SMulCommClass R N S]
(b : Basis ι R S)
{x : S}
(hx : x ≠ 0)
:
(↑(b.constr N)).toFun (Subtype.val ∘ ⇑(Ideal.basisSpanSingleton b hx)) = (Algebra.lmul R S) x