Documentation

Mathlib.RingTheory.HopfAlgebra

Hopf algebras #

In this file we define HopfAlgebra, and provide instances for:

Main definitions #

TODO #

(Note that all three facts have been proved for Hopf bimonoids in an arbitrary braided category, so we could deduce the facts here from an equivalence HopfAlgebraCat R ≌ Hopf_ (ModuleCat R).)

References #

class HopfAlgebra (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] extends Bialgebra :
Type (max u v)

A Hopf algebra over a commutative (semi)ring R is a bialgebra over R equipped with an R-linear endomorphism antipode satisfying the antipode axioms.

  • smul : RAA
  • toFun : RA
  • map_one' : (↑Algebra.toRingHom).toFun 1 = 1
  • map_mul' : ∀ (x y : R), (↑Algebra.toRingHom).toFun (x * y) = (↑Algebra.toRingHom).toFun x * (↑Algebra.toRingHom).toFun y
  • map_zero' : (↑Algebra.toRingHom).toFun 0 = 0
  • map_add' : ∀ (x y : R), (↑Algebra.toRingHom).toFun (x + y) = (↑Algebra.toRingHom).toFun x + (↑Algebra.toRingHom).toFun y
  • commutes' : ∀ (r : R) (x : A), Algebra.toRingHom r * x = x * Algebra.toRingHom r
  • smul_def' : ∀ (r : R) (x : A), r x = Algebra.toRingHom r * x
  • comul : A →ₗ[R] TensorProduct R A A
  • counit : A →ₗ[R] R
  • coassoc : (TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A Coalgebra.comul ∘ₗ Coalgebra.comul = LinearMap.lTensor A Coalgebra.comul ∘ₗ Coalgebra.comul
  • rTensor_counit_comp_comul : LinearMap.rTensor A Coalgebra.counit ∘ₗ Coalgebra.comul = (TensorProduct.mk R R A) 1
  • lTensor_counit_comp_comul : LinearMap.lTensor A Coalgebra.counit ∘ₗ Coalgebra.comul = (TensorProduct.mk R A R).flip 1
  • counit_one : Coalgebra.counit 1 = 1
  • mul_compr₂_counit : (LinearMap.mul R A).compr₂ Coalgebra.counit = (LinearMap.mul R R).compl₁₂ Coalgebra.counit Coalgebra.counit
  • comul_one : Coalgebra.comul 1 = 1
  • mul_compr₂_comul : (LinearMap.mul R A).compr₂ Coalgebra.comul = (LinearMap.mul R (TensorProduct R A A)).compl₁₂ Coalgebra.comul Coalgebra.comul
  • antipode : A →ₗ[R] A

    The antipode of the Hopf algebra.

  • mul_antipode_rTensor_comul : LinearMap.mul' R A ∘ₗ LinearMap.rTensor A HopfAlgebra.antipode ∘ₗ Coalgebra.comul = Algebra.linearMap R A ∘ₗ Coalgebra.counit

    One of the antipode axioms for a Hopf algebra.

  • mul_antipode_lTensor_comul : LinearMap.mul' R A ∘ₗ LinearMap.lTensor A HopfAlgebra.antipode ∘ₗ Coalgebra.comul = Algebra.linearMap R A ∘ₗ Coalgebra.counit

    One of the antipode axioms for a Hopf algebra.

Instances
    theorem HopfAlgebra.mul_antipode_rTensor_comul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [self : HopfAlgebra R A] :
    LinearMap.mul' R A ∘ₗ LinearMap.rTensor A HopfAlgebra.antipode ∘ₗ Coalgebra.comul = Algebra.linearMap R A ∘ₗ Coalgebra.counit

    One of the antipode axioms for a Hopf algebra.

    theorem HopfAlgebra.mul_antipode_lTensor_comul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [self : HopfAlgebra R A] :
    LinearMap.mul' R A ∘ₗ LinearMap.lTensor A HopfAlgebra.antipode ∘ₗ Coalgebra.comul = Algebra.linearMap R A ∘ₗ Coalgebra.counit

    One of the antipode axioms for a Hopf algebra.

    @[simp]
    theorem HopfAlgebra.mul_antipode_rTensor_comul_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : A) :
    (LinearMap.mul' R A) ((LinearMap.rTensor A HopfAlgebra.antipode) (Coalgebra.comul a)) = (algebraMap R A) (Coalgebra.counit a)
    @[simp]
    theorem HopfAlgebra.mul_antipode_lTensor_comul_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : A) :
    (LinearMap.mul' R A) ((LinearMap.lTensor A HopfAlgebra.antipode) (Coalgebra.comul a)) = (algebraMap R A) (Coalgebra.counit a)
    @[simp]
    theorem HopfAlgebra.sum_antipode_mul_eq {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
    irepr.index, HopfAlgebra.antipode (repr.left i) * repr.right i = (algebraMap R A) (Coalgebra.counit a)
    @[simp]
    theorem HopfAlgebra.sum_mul_antipode_eq {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
    irepr.index, repr.left i * HopfAlgebra.antipode (repr.right i) = (algebraMap R A) (Coalgebra.counit a)
    theorem HopfAlgebra.sum_antipode_mul_eq_smul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
    irepr.index, HopfAlgebra.antipode (repr.left i) * repr.right i = Coalgebra.counit a 1
    theorem HopfAlgebra.sum_mul_antipode_eq_smul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
    irepr.index, repr.left i * HopfAlgebra.antipode (repr.right i) = Coalgebra.counit a 1
    noncomputable instance CommSemiring.toHopfAlgebra (R : Type u) [CommSemiring R] :

    Every commutative (semi)ring is a Hopf algebra over itself

    Equations
    @[simp]
    theorem CommSemiring.antipode_eq_id (R : Type u) [CommSemiring R] :
    HopfAlgebra.antipode = LinearMap.id