Fractional ideal norms #
This file defines the absolute ideal norm of a fractional ideal I : FractionalIdeal R⁰ K
where
K
is a fraction field of R
. The norm is defined by
FractionalIdeal.absNorm I = Ideal.absNorm I.num / |Algebra.norm ℤ I.den|
where I.num
is an
ideal of R
and I.den
an element of R⁰
such that I.den • I = I.num
.
Main definitions and results #
FractionalIdeal.absNorm
: the norm as a zero preserving morphism with values inℚ
.FractionalIdeal.absNorm_eq'
: the value of the norm does not depend on the choice ofI.num
andI.den
.FractionalIdeal.abs_det_basis_change
: the norm is given by the determinant of the basis change matrix.FractionalIdeal.absNorm_span_singleton
: the norm of a principal fractional ideal is the norm of its generator
theorem
FractionalIdeal.absNorm_div_norm_eq_absNorm_div_norm
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
{I : FractionalIdeal (nonZeroDivisors R) K}
(a : { x : R // x ∈ nonZeroDivisors R })
(I₀ : Ideal R)
(h : a • ↑I = Submodule.map (Algebra.linearMap R K) I₀)
:
↑(Ideal.absNorm I.num) / ↑|(Algebra.norm ℤ) ↑I.den| = ↑(Ideal.absNorm I₀) / ↑|(Algebra.norm ℤ) ↑a|
noncomputable def
FractionalIdeal.absNorm
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
:
FractionalIdeal (nonZeroDivisors R) K →*₀ ℚ
The absolute norm of the fractional ideal I
extending by multiplicativity the absolute norm
on (integral) ideals.
Equations
- FractionalIdeal.absNorm = { toFun := fun (I : FractionalIdeal (nonZeroDivisors R) K) => ↑(Ideal.absNorm I.num) / ↑|(Algebra.norm ℤ) ↑I.den|, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
theorem
FractionalIdeal.absNorm_eq
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
(I : FractionalIdeal (nonZeroDivisors R) K)
:
FractionalIdeal.absNorm I = ↑(Ideal.absNorm I.num) / ↑|(Algebra.norm ℤ) ↑I.den|
theorem
FractionalIdeal.absNorm_eq'
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
{I : FractionalIdeal (nonZeroDivisors R) K}
(a : { x : R // x ∈ nonZeroDivisors R })
(I₀ : Ideal R)
(h : a • ↑I = Submodule.map (Algebra.linearMap R K) I₀)
:
FractionalIdeal.absNorm I = ↑(Ideal.absNorm I₀) / ↑|(Algebra.norm ℤ) ↑a|
theorem
FractionalIdeal.absNorm_nonneg
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
(I : FractionalIdeal (nonZeroDivisors R) K)
:
0 ≤ FractionalIdeal.absNorm I
theorem
FractionalIdeal.absNorm_bot
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
:
theorem
FractionalIdeal.absNorm_one
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
:
FractionalIdeal.absNorm 1 = 1
theorem
FractionalIdeal.absNorm_eq_zero_iff
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
[NoZeroDivisors K]
{I : FractionalIdeal (nonZeroDivisors R) K}
:
theorem
FractionalIdeal.coeIdeal_absNorm
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
(I₀ : Ideal R)
:
FractionalIdeal.absNorm ↑I₀ = ↑(Ideal.absNorm I₀)
theorem
FractionalIdeal.abs_det_basis_change
{R : Type u_1}
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
[IsLocalization (Algebra.algebraMapSubmonoid R (nonZeroDivisors ℤ)) K]
[Algebra ℚ K]
[NoZeroDivisors K]
{ι : Type u_3}
[Fintype ι]
[DecidableEq ι]
(b : Basis ι ℤ R)
(I : FractionalIdeal (nonZeroDivisors R) K)
(bI : Basis ι ℤ { x : K // x ∈ ↑I })
:
|(Basis.localizationLocalization ℚ (nonZeroDivisors ℤ) K b).det (Subtype.val ∘ ⇑bI)| = FractionalIdeal.absNorm I
@[simp]
theorem
FractionalIdeal.absNorm_span_singleton
(R : Type u_1)
[CommRing R]
[IsDedekindDomain R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
{K : Type u_2}
[CommRing K]
[Algebra R K]
[IsFractionRing R K]
[IsLocalization (Algebra.algebraMapSubmonoid R (nonZeroDivisors ℤ)) K]
[Algebra ℚ K]
[Module.Finite ℚ K]
(x : K)
:
FractionalIdeal.absNorm (FractionalIdeal.spanSingleton (nonZeroDivisors R) x) = |(Algebra.norm ℚ) x|