Cotangent and localization away #
Let R → S → T be algebras such that T is the localization of S away from one
element, where S is generated over R by P with kernel I and Q is the
canonical S-presentation of T. Denote by J the kernel of the composition
R[X,Y] → T.
Main results #
Algebra.Generators.liftBaseChange_injective:T ⊗[S] (I/I²) → J/J²is injective ifTis the localization ofSaway from an element.
theorem
Algebra.Generators.comp_localizationAway_ker
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
(f : P.Ring)
(h : (algebraMap P.Ring S) f = g)
:
((localizationAway g).comp P).ker = Ideal.map ((localizationAway g).toComp P).toAlgHom P.ker ⊔
Ideal.span {(MvPolynomial.rename Sum.inr) f * MvPolynomial.X (Sum.inl ()) - 1}
noncomputable def
Algebra.Generators.compLocalizationAwayAlgHom
{R : Type u_1}
{S : Type u_2}
(T : Type u_3)
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
:
((localizationAway g).comp P).Ring →ₐ[R] Localization.Away ((Ideal.Quotient.mk (P.ker ^ 2)) (P.σ g))
If R[X] → S generates S, T is the localization of S away from g and
f is a pre-image of g in R[X], this is the R-algebra map R[X,Y] →ₐ[R] (R[X]/I²)[1/f]
defined via mapping Y to 1/f.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Algebra.Generators.compLocalizationAwayAlgHom_toAlgHom_toComp
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
(x : P.Ring)
:
(compLocalizationAwayAlgHom T g P) (((localizationAway g).toComp P).toAlgHom x) = (algebraMap P.Ring (Localization.Away ((Ideal.Quotient.mk (P.ker ^ 2)) (P.σ g)))) x
@[simp]
theorem
Algebra.Generators.compLocalizationAwayAlgHom_X_inl
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
:
(compLocalizationAwayAlgHom T g P) (MvPolynomial.X (Sum.inl ())) = IsLocalization.Away.invSelf ((Ideal.Quotient.mk (P.ker ^ 2)) (P.σ g))
theorem
Algebra.Generators.compLocalizationAwayAlgHom_relation_eq_zero
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
:
(compLocalizationAwayAlgHom T g P) ((MvPolynomial.rename Sum.inr) (P.σ g) * MvPolynomial.X (Sum.inl ()) - 1) = 0
theorem
Algebra.Generators.sq_ker_comp_le_ker_compLocalizationAwayAlgHom
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
:
theorem
Algebra.Generators.liftBaseChange_injective_of_isLocalizationAway
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{ι : Type u_4}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(g : S)
[IsLocalization.Away g T]
(P : Generators R S ι)
:
Let R → S → T be algebras such that T is the localization of S away from one
element, where S is generated over R by P with kernel I and Q is the
canonical S-presentation of T. Denote by J the kernel of the composition
R[X,Y] → T. Then T ⊗[S] (I/I²) → J/J² is injective.
Stacks Tag 08JZ (part of (1))