Discriminant of a family of vectors #
Given an A-algebra B and b, an ι-indexed family of elements of B, we define the
discriminant of b as the determinant of the matrix whose (i j)-th element is the trace of
b i * b j.
Main definition #
Algebra.discr A b: the discriminant ofb : ι → B.
Main results #
Algebra.discr_zero_of_not_linearIndependent: ifbis not linear independent, thenAlgebra.discr A b = 0.Algebra.discr_of_matrix_vecMulandAlgebra.discr_of_matrix_mulVec: formulas relatingAlgebra.discr A ι bwithAlgebra.discr A (b ᵥ* P.map (algebraMap A B))andAlgebra.discr A (P.map (algebraMap A B) *ᵥ b).Algebra.discr_not_zero_of_basis: over a field, ifbis a basis, thenAlgebra.discr K b ≠ 0.Algebra.discr_eq_det_embeddingsMatrixReindex_pow_two: ifL/Kis a field extension andb : ι → L, thendiscr K bis the square of the determinant of the matrix whose(i, j)coefficient isσⱼ (b i), whereσⱼ : L →ₐ[K] Eis the embedding in an algebraically closed fieldEcorresponding toj : ιvia a bijectione : ι ≃ (L →ₐ[K] E).Algebra.discr_powerBasis_eq_prod: the discriminant of a power basis.Algebra.discr_isIntegral: ifKandLare fields andIsScalarTower R K L, ifb : ι → Lsatisfies∀ i, IsIntegral R (b i), thenIsIntegral R (discr K b).Algebra.discr_mul_isIntegral_mem_adjoin: letKbe the fraction field of an integrally closed domainRand letLbe a finite separable extension ofK. LetB : PowerBasis K Lbe such thatIsIntegral R B.gen. Then for all,z : Lwe have(discr K B.basis) • z ∈ adjoin R ({B.gen} : Set L).
Implementation details #
Our definition works for any A-algebra B, but note that if B is not free as an A-module,
then trace A B = 0 by definition, so discr A b = 0 for any b.
Given an A-algebra B and b, an ι-indexed family of elements of B, we define
discr A ι b as the determinant of traceMatrix A ι b.
Equations
- Algebra.discr A b = (Algebra.traceMatrix A b).det
Instances For
If b is not linear independent, then Algebra.discr A b = 0.
Relation between Algebra.discr A ι b and
Algebra.discr A (b ᵥ* P.map (algebraMap A B)).
Relation between Algebra.discr A ι b and
Algebra.discr A ((P.map (algebraMap A B)) *ᵥ b).
If b is a basis of a finite separable field extension L/K, then Algebra.discr K b ≠ 0.
If b is a basis of a finite separable field extension L/K,
then Algebra.discr K b is a unit.
If L/K is a field extension and b : ι → L, then discr K b is the square of the
determinant of the matrix whose (i, j) coefficient is σⱼ (b i), where σⱼ : L →ₐ[K] E is the
embedding in an algebraically closed field E corresponding to j : ι via a bijection
e : ι ≃ (L →ₐ[K] E).
The discriminant of a power basis.
A variation of Algebra.discr_powerBasis_eq_prod.
A variation of Algebra.discr_powerBasis_eq_prod.
Formula for the discriminant of a power basis using the norm of the field extension.
If K and L are fields and IsScalarTower R K L, and b : ι → L satisfies
∀ i, IsIntegral R (b i), then IsIntegral R (discr K b).
Let K be the fraction field of an integrally closed domain R and let L be a finite
separable extension of K. Let B : PowerBasis K L be such that IsIntegral R B.gen.
Then for all, z : L that are integral over R, we have
(discr K B.basis) • z ∈ adjoin R ({B.gen} : Set L).