Documentation

Mathlib.RingTheory.DedekindDomain.SInteger

S-integers and S-units of fraction fields of Dedekind domains #

Let K be the field of fractions of a Dedekind domain R, and let S be a set of prime ideals in the height one spectrum of R. An S-integer of K is defined to have v-adic valuation at most one for all primes ideals v away from S, whereas an S-unit of is defined to have v-adic valuation exactly one for all prime ideals v away from S.

This file defines the subalgebra of S-integers of K and the subgroup of S-units of , where K can be specialised to the case of a number field or a function field separately.

Main definitions #

Main statements #

References #

Tags #

S integer, S-integer, S unit, S-unit

S-integers #

@[simp]
theorem Set.integer_carrier {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
(S.integer K) = {x : K | vS, v.valuation x 1}

The R-subalgebra of S-integers of K.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Set.integer_eq {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
    (S.integer K).toSubring = ⨅ (v : IsDedekindDomain.HeightOneSpectrum R), ⨅ (_ : vS), v.valuation.valuationSubring.toSubring
    theorem Set.integer_valuation_le_one {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] (x : { x : K // x S.integer K }) {v : IsDedekindDomain.HeightOneSpectrum R} (hv : vS) :
    v.valuation x 1

    S-units #

    @[simp]
    theorem Set.unit_coe {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
    (S.unit K) = {x : Kˣ | vS, v.valuation x = 1}

    The subgroup of S-units of .

    Equations
    Instances For
      theorem Set.unit_eq {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
      S.unit K = ⨅ (v : IsDedekindDomain.HeightOneSpectrum R), ⨅ (_ : vS), v.valuation.valuationSubring.unitGroup
      theorem Set.unit_valuation_eq_one {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] (x : { x : Kˣ // x S.unit K }) {v : IsDedekindDomain.HeightOneSpectrum R} (hv : vS) :
      v.valuation x = 1
      @[simp]
      theorem Set.unitEquivUnitsInteger_symm_apply_coe {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] (x : { x : K // x S.integer K }ˣ) :
      ((S.unitEquivUnitsInteger K).symm x) = Units.mk0 x
      @[simp]
      theorem Set.val_unitEquivUnitsInteger_apply_coe {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] (x : { x : Kˣ // x S.unit K }) :
      ((S.unitEquivUnitsInteger K) x) = x
      def Set.unitEquivUnitsInteger {R : Type u} [CommRing R] [IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R)) (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
      { x : Kˣ // x S.unit K } ≃* { x : K // x S.integer K }ˣ

      The group of S-units is the group of units of the ring of S-integers.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For