Intervals Ixx (f x) (f (Order.succ x)) #
In this file we prove
Monotone.biUnion_Ico_Ioc_map_succ: ifαis a linear archimedean succ order andβis a linear order, then for any monotone functionfandm n : α, the union of intervalsSet.Ioc (f i) (f (Order.succ i)),m ≤ i < n, is equal toSet.Ioc (f m) (f n);Monotone.pairwise_disjoint_on_Ioc_succ: ifαis a linear succ order,βis a preorder, andf : α → βis a monotone function, then the intervalsSet.Ioc (f n) (f (Order.succ n))are pairwise disjoint.
For the latter lemma, we also prove various order dual versions.
If α is a linear archimedean succ order and β is a linear order, then for any monotone
function f and m n : α, the union of intervals Set.Ioc (f i) (f (Order.succ i)), m ≤ i < n,
is equal to Set.Ioc (f m) (f n)
If α is a linear succ order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioc (f n) (f (Order.succ n)) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ico (f n) (f (Order.succ n)) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioo (f n) (f (Order.succ n)) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioc (f Order.pred n) (f n) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ico (f Order.pred n) (f n) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioo (f Order.pred n) (f n) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioc (f (Order.succ n)) (f n) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ico (f (Order.succ n)) (f n) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioo (f (Order.succ n)) (f n) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioc (f n) (f (Order.pred n)) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ico (f n) (f (Order.pred n)) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioo (f n) (f (Order.pred n)) are pairwise disjoint.