Limit elements in well-ordered types #
This file introduces two main definitions:
wellOrderSucc a
: the successor of an elementa
in a well-ordered type- the typeclass
IsWellOrderLimitElement a
which asserts that an elementa
(in a well-ordered type) is neither a successor nor the smallest element, i.e.a
is a limit element
Then, the lemma eq_bot_or_eq_succ_or_isWellOrderLimitElement
shows that an element
in a well-ordered type is either ⊥
, a successor, or a limit element.
noncomputable def
wellOrderSucc
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
(a : α)
:
α
Given an element a : α
in a well ordered set, this is the successor of a
,
i.e. the smallest element strictly greater than a
if it exists (or a
itself otherwise).
Equations
- wellOrderSucc a = ⋯.succ a
Instances For
theorem
self_le_wellOrderSucc
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
(a : α)
:
a ≤ wellOrderSucc a
theorem
wellOrderSucc_le
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
{a : α}
{b : α}
(ha : a < b)
:
wellOrderSucc a ≤ b
theorem
self_lt_wellOrderSucc
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
{a : α}
{b : α}
(h : a < b)
:
a < wellOrderSucc a
theorem
le_of_lt_wellOrderSucc
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
{a : α}
{b : α}
(h : a < wellOrderSucc b)
:
a ≤ b
This property of an element a : α
in a well-ordered type holds iff a
is a
limit element, i.e. it is not a successor and it is not the smallest element of α
.
- not_bot : ∃ (b : α), b < a
Instances
theorem
IsWellOrderLimitElement.not_bot
{α : Type u_1}
[LinearOrder α]
{a : α}
[self : IsWellOrderLimitElement a]
:
∃ (b : α), b < a
theorem
IsWellOrderLimitElement.not_succ
{α : Type u_1}
[LinearOrder α]
{a : α}
[self : IsWellOrderLimitElement a]
(b : α)
(hb : b < a)
:
theorem
IsWellOrderLimitElement.neq_bot
{α : Type u_1}
[LinearOrder α]
(a : α)
[ha : IsWellOrderLimitElement a]
[OrderBot α]
:
theorem
IsWellOrderLimitElement.bot_lt
{α : Type u_1}
[LinearOrder α]
(a : α)
[ha : IsWellOrderLimitElement a]
[OrderBot α]
:
theorem
IsWellOrderLimitElement.wellOrderSucc_lt
{α : Type u_1}
[LinearOrder α]
{a : α}
[ha : IsWellOrderLimitElement a]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
{b : α}
(hb : b < a)
:
wellOrderSucc b < a
theorem
eq_bot_or_eq_succ_or_isWellOrderLimitElement
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
[OrderBot α]
(a : α)
:
a = ⊥ ∨ (∃ (b : α), a = wellOrderSucc b ∧ b < a) ∨ IsWellOrderLimitElement a
theorem
IsWellOrderLimitElement.neq_succ
{α : Type u_1}
[LinearOrder α]
[IsWellOrder α fun (x1 x2 : α) => x1 < x2]
(a : α)
(ha : a < wellOrderSucc a)
[IsWellOrderLimitElement (wellOrderSucc a)]
: