Units of a number field #
We prove some basic results on the group (π K)Λ£ of units of the ring of integers π K of a number
field K and its torsion subgroup.
Main definition #
NumberField.Units.torsion: the torsion subgroup of a number field.
Main results #
NumberField.isUnit_iff_norm: an algebraic integerx : π Kis a unit if and only if|norm β x| = 1.NumberField.Units.mem_torsion: a unitx : (π K)Λ£is torsion iffw x = 1for all infinite placeswofK.
Tags #
number field, units
theorem
NumberField.isUnit_iff_norm
{K : Type u_1}
[Field K]
[NumberField K]
{x : RingOfIntegers K}
:
instance
NumberField.Units.instCoeHTCUnitsRingOfIntegers
(K : Type u_1)
[Field K]
:
CoeHTC (RingOfIntegers K)Λ£ K
Equations
- NumberField.Units.instCoeHTCUnitsRingOfIntegers K = { coe := fun (x : (NumberField.RingOfIntegers K)Λ£) => (algebraMap (NumberField.RingOfIntegers K) K) βx }
theorem
NumberField.Units.coe_injective
(K : Type u_1)
[Field K]
:
Function.Injective fun (x : (RingOfIntegers K)Λ£) => (algebraMap (RingOfIntegers K) K) βx
theorem
NumberField.Units.coe_mul
{K : Type u_1}
[Field K]
(x y : (RingOfIntegers K)Λ£)
:
(algebraMap (RingOfIntegers K) K) β(x * y) = (algebraMap (RingOfIntegers K) K) βx * (algebraMap (RingOfIntegers K) K) βy
@[simp]
theorem
NumberField.Units.norm
(K : Type u_1)
[Field K]
[NumberField K]
(x : (RingOfIntegers K)Λ£)
:
theorem
NumberField.Units.pos_at_place
{K : Type u_1}
[Field K]
(x : (RingOfIntegers K)Λ£)
(w : InfinitePlace K)
:
theorem
NumberField.Units.sum_mult_mul_log
{K : Type u_1}
[Field K]
[NumberField K]
(x : (RingOfIntegers K)Λ£)
:
The torsion subgroup of the group of units.
Equations
Instances For
theorem
NumberField.Units.mem_torsion
(K : Type u_1)
[Field K]
{x : (RingOfIntegers K)Λ£}
[NumberField K]
:
instance
NumberField.Units.instFintypeSubtypeUnitsRingOfIntegersMemSubgroupTorsion
(K : Type u_1)
[Field K]
[NumberField K]
:
The torsion subgroup is finite.
instance
NumberField.Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion
(K : Type u_1)
[Field K]
[NumberField K]
:
The torsion subgroup is cyclic.
The order of the torsion subgroup.
Equations
Instances For
instance
NumberField.Units.instNeZeroNatTorsionOrder
(K : Type u_1)
[Field K]
[NumberField K]
:
NeZero (torsionOrder K)
theorem
NumberField.Units.rootsOfUnity_eq_one
(K : Type u_1)
[Field K]
[NumberField K]
{k : β+}
(hc : (βk).Coprime (torsionOrder K))
{ΞΆ : (RingOfIntegers K)Λ£}
:
If k does not divide torsionOrder then there are no nontrivial roots of unity of
order dividing k.
The group of roots of unity of order dividing torsionOrder is equal to the torsion
group.
theorem
NumberField.Units.even_torsionOrder
(K : Type u_1)
[Field K]
[NumberField K]
:
Even (torsionOrder K)
theorem
NumberField.Units.torsion_eq_one_or_neg_one_of_odd_finrank
{K : Type u_1}
[Field K]
[NumberField K]
(h : Odd (Module.finrank β K))
(x : β₯(torsion K))
:
theorem
NumberField.Units.torsionOrder_eq_two_of_odd_finrank
{K : Type u_1}
[Field K]
[NumberField K]
(h : Odd (Module.finrank β K))
: